CS ??? Computer Security Cryptography Yasser F. O. Mohammad

REMINDER 1: Operational of Conventional Cryptosystem

REMINDER 2: Shared Key Encryption

REMINDER 3: Public Key Encryption

REMINDER 4: Classical

Cryptosystems

Substitution Techniques

- Caesar Cipher
 - Example

Plain : meet me after the toga party cipher: PHHW PH DIWHU WKH WRJD SDUWB

- Subtitution Table: plain: abcdefghijklmnopqrstuvwxyz cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
- Formula

 $C = E(3, p) = (p + 3) \mod 26$ $p = D(k, C) = (C - k) \mod 26$

How to do cryptanalysis???

One Time Pad

Ultimate Security Algorithm

$$c_i = k_i \oplus p_i$$

- If *k* is truly random, then the code is unbreakable
- To encipher a text of *n* characters you need to securely distribute a key of *n* characters. Why don't we transfer the original plain text instead?

Simple Transposition Cipher

- Put data in rows and read them in columns of arbitrary order
- Key: 4312567
 Input:t tnaapt mtsuoao d wcoixk n lypet z

Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

Rotor Machines

• Used by German (Engema) and Japanese (Purple) in WW II and was broken by Turing and others

Ideal Block Cipher

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

- Needs n*2ⁿ key [in fact n*(2ⁿ-1)]
- Short Block \rightarrow Easily breakable
- Long Block \rightarrow Difficult to implement (storing the key)

Fiestel Network

- Each round consists of:
 - Substitution on left half of text
 - Permutation of the two halves
- The substitution is controlled by the key of every round
- Factors of Security:
 - Block size
 - Key size
 - N. rounds
 - Subkey generation
 - Round Function
- Decryption = Encryption with reversed subkey order

Example Block Ciphers

- DES (Data Encryption Standard)≈DEA
 - 1977 and cracked in 1998 with 250,000\$ in 3 days
 - 64 bits block and 56 bits key
- 3DES
 - $C=E(k_3,D(k_2(E(k_1,M))), M=D(k_1,E(k_2(D(k_3,C))))$
 - Key length=56, 112, 168
 - Not suitable for software
- AES (Advanced Encryption Standard)
 - 128 bits block and 128,192,256 blocks key
 - Not a Feistel structure

Other Examples of Block Ciphers

- IDEA (International Data Encryption Algorithm)
 - 128 bit key
 - Uses XOR, binary addition and multiplication
- Blowfish
 - 1993 by Bruce Schneier
 - Fast and easy to implement
 - Variable S-boxes
- RC5
 - 1994 By Ron Rivest
 - Suitable for hardware and software
 - Used by RSA security Inc.

Uses of Shared-Key Ciphers

Algorithm	Key Size (bits)	Block Size (bits)	Number of Rounds	Applications
DES	56	64	16	SET, Kerberos
Triple DES	112 or 168	64	48	Financial key management, PGP, S/MIME
AES	128, 192, or 256	128	10, 12, or 14	Intended to replace DES and 3DES
IDEA	128	64	8	PGP
Blowfish	Variable to 448	64	16	Various software packages
RC5	Variable to 2048	64	Variable to 255	Various software packages

ECB (Electronic Codebook)

- Just apply it to every block in succession
- Every plain text block has the same corresponding cipher

CBC (Cipher Block Chaining Mode)

CFB (Cipher Feedback Mode)

• Block cipher \rightarrow stream cipher

. . .

P₁

OFB (Output Feedback Mode)

Block cipher → Stream cipher

(b) Decryption

CTR (Counter Mode)

Location of Encryption Function

Key Hierarchy

Key Distribution Center

