EE327 Digital Signal Processing DFT Properties Yasser F. O. Mohammad

REMIDER 1. Applications of DFT

- Finding Signal's Frequency Spectrum
 - Understanding frequency contents of signals
- Finding System's Frequency Response
 - Analyzing Systems in the Frequency domain
- Intermediate Step for other operations
 FFT convolution

REMINDER 2. Information Coding

in Signals

- Information in the time domain
 - Shape
 - Examples:
 - Readings of a sensor over time
 - Stock market signals
- Information in frequency domain
 - Amplitude
 - Phase
 - Frequency
 - Examples:
 - FM radio information
 - 50Hz noise

REMINDER 3. Understanding Signal's Frequency Spectrum

- 1. Collect data
- 2. Use DFT to convert it to frequency domain
- 3. Convert it to polar coordinates
- 4. If needed do this many times and average the results
- 5. Now study the spectrum

REMINDER 4: System's Frequency

Response

- Frequency response of a system H[*f*]:
 - Complete description of how it changes the amplitude and phase of input sinusoidals in the output.
- System's frequency response = Fourier Transform of its impulse response

REMINDER 5: Convolution via

Frequency domain

- c[n]= a[n]*b[n]
 - Pad both signals to N+M-1 points by adding zeros
 - 2. Convert both to frequency domain:
 •MagA[f], Mag[f]
 •PhaseB[f],Phase[f]
 - Multiply in frequency domain:
 MagC[f]=MagA[f]×MagB[f]
 PhaseC[f]=PhaseA[f]+PhaseB[f]
 - Convert C[f] to time domain to get c[n] EXACTLY

REMINER 6: Circular Convolution

Problem

Cause of Distortion: DFT assumes the signal is periodic

Properties of Fourier Transform

- We have two domains:
 - Time Domain
 - Frequency Domain
- How does a mathematical change in one domain affect the signal in the other domain?

Fourier Transform is Additive

- Scaling of the amplitude in one domain produces a scaling with the SAME factor in the amplitude of the other domain.
- Use polar or rectangular coordinates

Fourier Transform is Homogeneous

- Addition in one domain results in addition in the other domain.
- MUST Use rectangular coordinates
- NEVER add magnitudes in the frequency domain

FT is Linear

• Additive+Homogeneous = Linear

REMINDER: Linear Phase

Time Domain	Frequency Domain
Symmetric around ITS CENTER	Zero phase
Linear around something else	Linear phase
Asymmetric	Nonlinear phase

• Right Shift in time domain $\leftarrow \rightarrow$ Decrease in slope of the phase

Phase will be drawn unwrapped in this lecture

Example Time Shift

WHY?

- 1 sample shift in time domain $\leftarrow \rightarrow$ shift all sinusoidals
- The frequency response in this case is PROPORTIONAL to the frequency

Effect of time shift in general

What is encoded in the phase

Why symmetry result in linearity

• Why does symmetric signals appear as linear phase?

Time Flipping

• Flipping time domain negates the phase

$$x[n] \xleftarrow{DFT}_{IDFT} \rightarrow \operatorname{Re} X[f], \operatorname{Im} X[f]$$
$$x[-n] \xleftarrow{DFT}_{IDFT} \rightarrow \operatorname{Re} X[f], -\operatorname{Im} X[f]$$

Complex conjugate

• Change the sign of the imaginary part

• Complex conjugate of A[*f*] is called A*[*f*]

Applications of Time flipping

- Convolution = a[n] * b[n]
- Correlation= a[n] * b[-n]

•
$$a[n] * b[n] \longleftrightarrow_{IDFT} A[f] \times B[f]$$

•
$$a[n] * b[-n] \xleftarrow{DFT}{IDFT} A[f] \times B * [f]$$

Compression, Expansion and Multirate methods

• SELF READ

Amplitude Modulation

DTFT

• Decomposition $ReX(\omega) = \sum_{n = -\infty}^{+\infty} x[n] \cos(\omega n)$

$$ImX(\omega) = -\sum_{n=-\infty}^{+\infty} x[n] \sin(\omega n)$$

Synthesis

$$x[n] = \frac{1}{\pi} \int_{0}^{\pi} ReX(\omega) \cos(\omega n) - ImX(\omega) \sin(\omega n) d\omega$$

DFT and DTFT

- DFT is roughly the sampling of DTFT
- DFT is used in computer programs
- DTFT is used in mathematical computations

Parserval's Relation (Not in Exam)

N-1N/2 $\sum_{k=0}^{\infty} x[i]^2 = \frac{2}{N} \sum_{k=0}^{\infty} Mag X[k]^2$ i = 0