## EE327 Digital Signal Processing DFT Properties <br> Yasser F. O. Mohammad

## REMIDER 1. Applications of DFT

- Finding Signal's Frequency Spectrum
- Understanding frequency contents of signals
- Finding System's Frequency Response
- Analyzing Systems in the Frequency domain
- Intermediate Step for other operations
- FFT convolution


## REMINDER 2. Information Coding

 in Signals- Information in the time domain
- Shape
- Examples:
- Readings of a sensor over time
- Stock market signals
- Information in frequency domain
- Amplitude
- Phase
- Frequency
- Examples:
- FM radio information
- 50 Hz noise


## REMINDER 3. Understanding

 Signal's Frequency Spectrum1. Collect data
2. Use DFT to convert it to frequency domain
3. Convert it to polar coordinates
4. If needed do this many times and average the results
5. Now study the spectrum

## REMINDER 4: System's Frequency

 Response- Frequency response of a system $\mathrm{H}[f]$ :
- Complete description of how it changes the amplitude and phase of input sinusoidals in the output.
- System's frequency response = Fourier Transform of its impulse response
- $\mathrm{h}[\mathrm{t}]$



## REMINDER 5: Convolution via

## Frequency domain

- $c[n]=a[n] * b[n]$

1. Pad both signals to $\mathrm{N}+\mathrm{M}-1$ points by adding zeros

—周 $\frac{\text { TME }}{\text { FREQUEXCY }}$ 因

 c[n] EXACTLY

## REMINER 6: Circular Convolution Problem








Cause of Distortion: DFT assumes the signal is periodic

## Properties of Fourier Transform

- We have two domains:
- Time Domain
- Frequency Domain
- How does a mathematical change in one domain affect the signal in the other domain?


## Fourier Transform is Additive

- Scaling of the amplitude in one domain produces a scaling with the SAME factor in the amplitude of the other domain.
- Use polar or rectangular coordinates



## Fourier Transform is Homogeneous

- Addition in one domain results in addition in the other domain.
- MUST Use rectangular coordinates
- NEVER magnitudes in the frequency domain

Time Domain

add


Frequency Domain


## FT is Linear

- Additive+Homogeneous = Linear


## REMINDER: Linear Phase

| Time Domain | Frequency Domain |
| :---: | :---: |
| Symmetric around ITS CENTER | Zero phase |
| Linear around something else | Linear phase |
| Asymmetric | Nonlinear phase |

## Time Shift = Phase offset

$$
x[n] \underset{\text { DFT }}{\stackrel{\text { DFT }}{\longrightarrow}} \operatorname{Mag} X[f], \text { Phase } X[f]
$$

$$
x[n+s] \underset{\text { IDFT }}{\stackrel{D F T}{\leftrightarrows}} \operatorname{Mag} X[f], \text { PhaseX }[f]+2 \pi s f
$$

- Right Shift in time domain $\leftrightarrow \rightarrow$ Decrease in slope of the phase

Phase will be drawn unwrapped in this lecture

## Example Time Shift

Time Domain




Frequency Domain




## WHY?

- 1 sample shift in time domain $\leftarrow \rightarrow$ shift all sinusoidals
- The frequency response in this case is PROPORTIONAL to the frequency




## Effect of time shift in general




## What is encoded in the phase





## Why symmetry result in linearity

- Why does symmetric signals appear as linear phase?



## Time Flipping

- Flipping time domain negates the phase

$$
x[n] \underset{I D F T}{\stackrel{D F T}{\leftrightarrows}} \operatorname{Re} X[f], \operatorname{Im} X[f]
$$

$$
x[-n] \underset{I D F T}{\stackrel{D F T}{\leftrightarrows}} \operatorname{Re} X[f],-\operatorname{Im} X[f]
$$

## Complex conjugate

- Change the sign of the imaginary part
- Complex conjugate of $\mathrm{A}[f]$ is called $\mathrm{A}^{*}[f]$


## Applications of Time flipping

- Convolution $=a[n] * b[n]$
- Correlation $=a[n] * b[-n]$
- $a[n] * b[n] \stackrel{\text { IDFT }}{\stackrel{D F T}{\leftrightarrows}} A[f] \times B[f]$
- $a[n] * b[-n] \underset{\text { IDFT }}{\stackrel{D F T}{\leftrightarrows}} A[f] \times B *[f]$

Compression, Expansion and Multirate methods

- SELF READ


## Amplitude Modulation



## DTFT

- Decomposition

$$
\begin{aligned}
& \operatorname{Re} X(\omega)=\sum_{n=-\infty}^{+\infty} x[n] \cos (\omega n) \\
& \operatorname{Im} X(\omega)=-\sum_{n=-\infty}^{+\infty} x[n] \sin (\omega n)
\end{aligned}
$$

- Synthesis

$$
x[n]=\frac{1}{\pi} \int_{0}^{\pi} \operatorname{Re} X(\omega) \cos (\omega n)-\operatorname{Im} X(\omega) \sin (\omega n) d \omega
$$

DFT and DTFT

- DFT is roughly the sampling of DTFT
- DFT is used in computer programs
- DTFT is used in mathematical computations


## Parserval's Relation (Not in Exam)

$$
\sum_{i=0}^{N-1} x[i]^{2}=\frac{2}{N} \sum_{k=0}^{N / 2} \operatorname{Mag} X[k]^{2}
$$

