EE327 Digital Signal Processing Introduction to Digital Filters Yasser F. O. Mohammad

REMINDER 1:

Impulse ←→Constant Magnitude

REMINDER 2:

Rectangular Pulse $\leftarrow \rightarrow$ Sinc

REMINDER 3:

Sinc $\leftarrow \rightarrow$ Rectangular Pulse

Rectangular pulse in frequency domain

 $x[i] = \frac{1}{N} \frac{\sin(2\pi i (M - 1/2)/N)}{\sin(\pi i/N)}$

Fast Fourier Transform

- A fast way to calculate DFT
- FFT: N points signal (Time Domain)
 →N complex numbers (Frequency Domain)
- The last N/2 points are a mirror image of the first N/2
- Only N/2+1 independent real and N/2+1 independent imaginary numbers.
- To work the input MUST be padded with zero to a power of 2 number of points.

Why Filters

- Signal Separation
 - Separate mixed signals
- Signal Restoration
 - Remove the effect of unwanted system on the signal

Why Digital Filters

• Can achieve far more superior results compared to analog filters

How to Represent a Filter

- Finite Impulse Response (FIR)
 - Impulse Response
 - Filter Kernel
 - Step Response
 - Frequency Response $y[n] = \sum_{i=0}^{M} a_{-i} x[n-i]$
- Infinite Impulse Response (IIR)

• Recursion Coefficient

$$y[n] = \sum_{j=0}^{M_1} a_{-j} x[n-j] + \sum_{i=0}^{M_2} b_{-i} y[n-i]$$

Relation between Kernel

Representations

What is a dB

- A bel = an increase in POWER by an order of magnitude
- A decibel = an increase in power by a factor of ONE

$$dB = 10\log_{10} \frac{P_2}{P_1}$$
$$dB = 20\log_{10} \frac{A_2}{A_1}$$

Information Representation

• In time domain

- Shape
- E.G. measurement of sun light every second
- In frequency domain
 - Frequency
 - Phase
 - E.G. measurement of a distance between a planet and a star over time.
- Mixed
 - EKG with white noise

Time Domain Parameters

Step Response

- Measured by rise time (time to go from 10% to 90% amplitude level)
- Overshooting
- Phase Linearity

Time Domain Parameters

Time Domain Parameters

Frequency Domain Parameters

- Roll off
- Ripple in passband
- Stopband attenuation

Frequency Domain Parameters

Frequency Domain Parameters

Most Common Filter Types

a. High-pass by adding parallel stages

x[n]

Low-pass

h[n]

δ[n]

All-pass

> y[n]

- Spectral Inversion
- Steps Done to IR:
 - Change sign of each sample
 - Add one to the center sample
- Conditions:
 - Original Filter is symmetric (Linear Phase)
 - The one must be added in the center

 Spectral Inversion

- Spectral Reversal
- Steps Done to IR:
 Change sign of every other sample
- Why is it working?:
 - Multiplication with a sign of frequency of 0.5

 Spectral Reversal

Filter Classification

FILTER USED FOR:

FILTER IMPLEMENTED BY:

	Convolution Finite Impulse Response (FIR)	Recursion Infinite Impulse Response (IIR)
Time Domain (smoothing, DC removal)	Moving average (Ch. 15)	Single pole (Ch. 19)
Frequency Domain (separating frequencies)	Windowed-sinc (Ch. 16)	Chebyshev (Ch. 20)
Custom (Deconvolution)	FIR custom (Ch. 17)	Iterative design (Ch. 26)