EE327 Digital Signal Processing
 Statistics and Noise

Yasser F. O. Mohammad
2010.2.19

REMINDER 1

What is a discrete signal

(a)

Continuous Signal $\quad x(t)=\sin \left(2 \pi f_{o} t\right)$

$$
\text { Discrete Signal } \quad x[n]=\sin \left(2 \pi f_{0} n T_{s}\right)
$$

(c)

REMINDER 2

Types of Signals

		Independent	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Discrete	Continuous
	Discrete	Quantized Discrete Signal (Digital Signal) $x[n]$	Quantized Signal $\bar{x}(t)$
	Continuous	Discrete or Digitized Signal $\tilde{x}[n]$	Continuous or Analog Signal $x(t)$

REMINDER 3
 General DSP System

$$
\begin{aligned}
& y=\left(b_{-1} y_{-1}+\cdots+b_{-m} y_{-m}\right)+\left(a x+a_{-1} x_{-1}+\cdots+a_{-n} x_{-n}\right) \\
& y=\sum_{i=1}^{m} b_{-i} y_{-1}+\sum_{j=0}^{n} a_{-j} x_{-1}
\end{aligned}
$$

Nearly ALL DSP that you need is contained in this equation

Mean and Standard Deviation

- Mean

$$
\mu=\frac{1}{N} \sum_{i=0}^{N-1} x[i]=\frac{1}{N} \sum_{i=0}^{N-1} x_{i}
$$

$$
\mu=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x(t) d t
$$

- Variance

$$
\sigma^{2}=\frac{1}{N-1} \sum_{i=0}^{N-1}\left(x_{i}-\mu\right)^{2}
$$

$$
\sigma^{2}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}(x(t)-\mu)^{2} d t
$$

- Root Mean Square (quadratic mean)

$$
R M S=\sqrt{\frac{1}{N} \sum_{i=0}^{N-1}\left(x_{i}\right)^{2}} \quad R M S=\lim _{T \rightarrow \infty} \sqrt{\frac{1}{T} \int_{0}^{T} x(t)^{2} d t}
$$

All continuous formulas assume that $x(t)$ is zero for $t<0$ or $x(-t)=x(t)$
Self test: Find the relation between RMS and variance for signals with zero mean

Common variance formulas

a. Square Wave, $\mathrm{Vpp}=2 \sigma$

b. Triangle wave, $\mathrm{Vpp}=\sqrt{12} \sigma$

Calculating the Mean and Variance

```
100 CALCULATION OF THE MEAN AND STANDARD DEVIATION
110'
120 DIM X[511]
130 N% = 512
140'
150 GOSUB XXXX
160'
170 MEAN =0
180 FOR I% = 0 TO N%-1
190 MEAN = MEAN + X[[%]
200 NEXT I%
210 MEAN = MEAN/N%
220'
230 VARIANCE =0
240 FOR I% = 0 TO N%-1
250 VARIANCE = VARIANCE + ( X[I%] - MEAN )^2
260 NEXT I%
270 VARIANCE = VARIANCE/(N%-1)
280 SD = SQR(VARIANCE)
290'
300 PRINT MEAN SD 'Print the calculated mean and standard deviation
310'
320 FNI
```


Catculating the Mean and Variance Better way (Running Statistics)

$$
\sigma^{2}=\frac{1}{N-1}\left[\sum_{i=0}^{N-1} x_{i}^{2}-\frac{1}{N}\left(\sum_{i=0}^{N-1} x_{i}\right)^{2}\right]
$$

100 'MEAN AND STANDARD DEVIATION USING RUNNING STATISTICS
110^{\prime}
120 DIM X[511] 'The signal is held in X[0] to X[511]
130 '
140 GOSUB XXXX 'Mythical subroutine that loads the signal into X[]
150 '
$160 \mathrm{~N} \%=0 \quad$ 'Zero the three running parameters
170 SUM $=0$
180 SUMSQUARES $=0$
190^{\prime}
200 FOR I\% = 0 TO $511 \quad$ 'Loop through each sample in the signal
210
220 N\% = N\% +1
'Update the three parameters
230 SUM = SUM + X[I\%]
240 SUMSQUARES $=$ SUMSQUARES $+\mathrm{X}[\text { [} \%]^{\wedge} 2$
250
260 MEAN $=$ SUM/N\% 'Calculate mean and standard deviation via Eq. 2-3
270 IF N $\%=1$ THEN SD $=0$: GOTO 300
$280 \mathrm{SD}=\mathrm{SQR}\left(\right.$ (SUMSQUARES $\left.\left.-\mathrm{SUM}^{\wedge} 2 / \mathrm{N} \%\right) /(\mathrm{N} \%-1)\right)$
290
300 PRINT MEAN SD
310
320 NEXT I\%
330 '
340 END

Signal to noise ratio

$$
S N R=\frac{\text { power of signal }}{\text { power of noise }}
$$

Coefficient of variance

$C V=\underline{\text { standard deviation }}$
mean

SNR and CV

-Sometimes:

signal $=$ mean, noise $=$ variance
In these cases

$$
S N R=\frac{\mu}{\sigma} \quad C V=\frac{\sigma}{\mu} \times 100 \%
$$

We want high SNR and low CV

Probability and Statistics

- Statistics describe acquired signal
- Probabilities describes underlying process
- Difference is the statistical fluctuations
- Typical error is

$$
\frac{\sigma}{N^{\frac{1}{2}}}
$$

Variance equation again

- Variance of acquired signal:

$$
\sigma^{2}=\frac{1}{N} \sum_{i=0}^{N-1}\left(x_{i}-\mu\right)^{2}
$$

- ESTIMATED Variance of underlying process

$$
\sigma^{2}=\frac{1}{N-1} \sum_{i=0}^{N-1}\left(x_{i}-\mu\right)^{2}
$$

Examples of mean and variance

FAST TEST: These signals are discrete or continuous? What is the domain of these signals?

Stationary

nonstationary

