EC325 Microprocessors Overview

Yasser F. O. Mohammad

2010.2.21

Why are you here?

- 1. Learn microprocessors
- 2. Pass exams
- 3. Have some time to other subjects
- **4**. Have fun!!

Your final goal

Find the optimal balance between these four CONFLICTING goals

Teaching Team

- Instructor: Yasser F. O. Mohammad
 - Computers and Systems section (Intelligent Robotics)
 - Email: yasserfarouk@gmail.com
 - Web: http://www.ii.ist.i.kyoto-u.ac.jp/~yasser
- TA: Eng. Islam
- Course Website:
 - http://www.ii.ist.i.kyoto-u.ac.jp/~yasser/courses/Micro3CS/
- Google Group:
 - May be

Course Syllabus

- Introduction
- Basics of 80x86 architecture (IA32)
- Addressing Modes
- Assembly
 - Using the assembler
 - Data movement
 - Arithmetic and Logic
 - Program control
 - Using assembly with C++
 - Basic system calls
 - Computer based Control using Assembly
- Interrupts
- Basic I/O interfacing
- SSE, SIMD, MMX etc
- Advanced IA32 topics

Where does it fit in your field

• Organization, Architecture and microprocessor

Defining Subject

Course Philosophy

- Maximize practical engineering sense
- Maximize field exposure

• Learn 8x86 in order to understand other microprocessors as well.

Text Books

Main Text

- The Intel Microprocessors Interfacing)
 - 7nd edition by Barry Brey (bry)
- 80x86 Assembly and computer architecture
 - 1st edition by Richard C. Detmar (det)

Other References

- 8oX86 IBM PC and Compatible Computers: Assembly Language, Design, and Interfacing Volumes I & II
 - 2nd edition by Mohammad Ali Mazidi and Janice Gillispie Mazidi (maz)
- Professional Assembly Language
 - 1st edition by Richard Blum

(Architecture, Programming and

Course Content (tentative)

Item	Source
Introduction to microprocessors and 8x86	Brey ch 1
80x86 basic internal architecture	Brey ch 2
Addressing modes	Brey ch 3
Elements of assembly language	Det ch 3
Basic instructions	Det ch 4
Branching and Looping	Det ch 5
Procedures	Det ch 6
String Operations	Det ch 7
Bit Manipulation	Det ch 8
Assembly process	Det ch 9
Floating Point Arithmetic	Det ch 10
Decimal Arithmetic	Det ch 11
Input/Output	Det ch 12

Subject to modification any time during the semester

x86 Architecture (IA32)

- Basic Architecture unchanged since 1978 (8086)
 - CISC Architecture
 - 8 General Purpose Registers
 - EAX, EBX, ECX, EDX, EBP, ESP, ESI, EDI
 - 6 segment registers, processor status register, and an instruction pointer
- Instruction set:
 - One operand can be in memory
 - Variable instruction size (1 13 bytes)
 - Memory segmentation

Ancient History

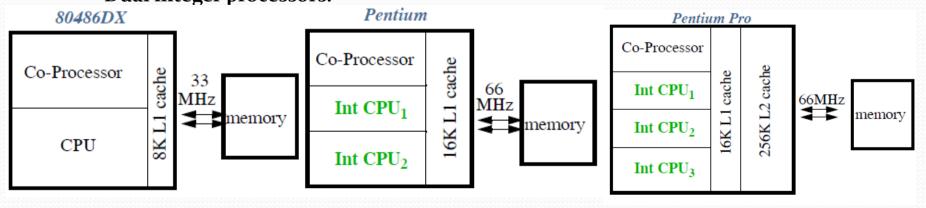
• 4004:

- 4-bit microprocessor.
- 4KB main memory.
- 45 instructions.
- PMOS technology.
- 50 KIPS
- 8008: (1971)
 - 8-bit version of 4004.
 - 16KB main memory.
 - 48 instructions.
 - NMOS technology.
- 8080: (1973)
 - 8-bit microprocessor.
 - 64KB main memory.
 - 2 microseconds clock cycle time; 500,000 instructions/sec.
 - 10X faster than 8008.

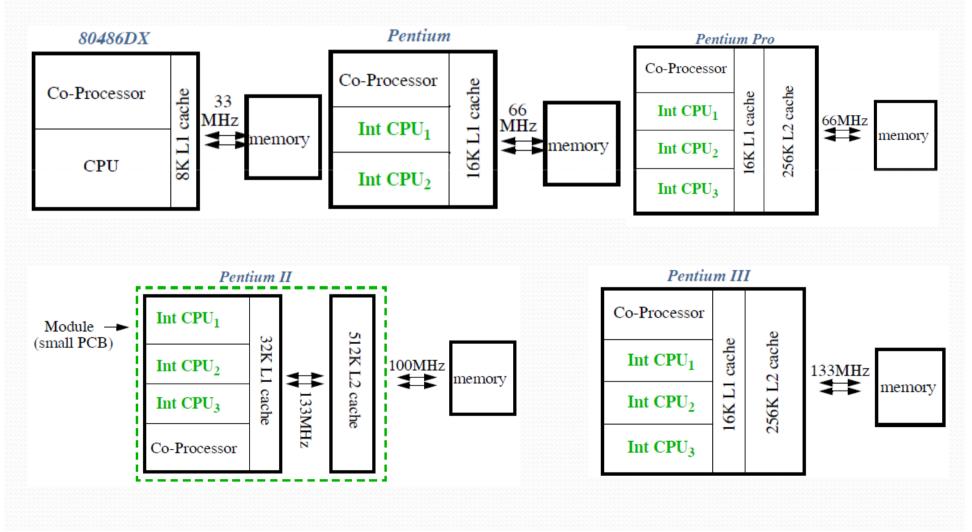
Very Old History

- 8085: (1977)
 - 8-bit microprocessor upgraded version of the 8080.
 - 64KB main memory.
 - 1.3 microseconds clock cycle time; 769,230 instructions/sec.
 - 246 instructions.
 - Intel sold 100 million copies of this 8-bit microprocessor.
- 8086: (1978) 8088 (1979)
 - 16-bit microprocessor.
 - 1MB main memory.
 - 2.5 MIPS (400 ns).
 - 4- or 6-byte instruction cache.
 - Other improvements included more registers and additional instructions.
- 80286: (1983)
 - 16-bit microprocessor very similar in instruction set to the 8086.
 - 16MB main memory.
 - 4.0 MIPS (250 ns/8MHz).

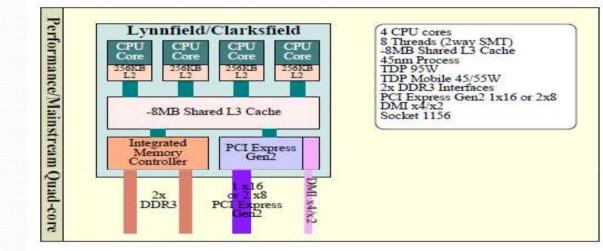
Old History

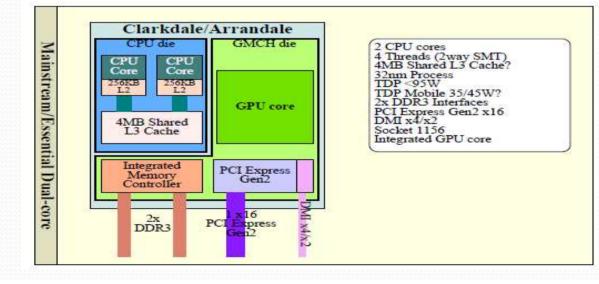

- 80386: (1986)
 - 32-bit microprocessor.
 - 4GB main memory.
 - 12-33MHz.
 - Memory management unit added.
 - Variations: DX, EX, SL, SLC (cache) and SX.
 - 80386SX: 16MB through a 16-bit data bus and 24 bit address bus.
- 80486: (1989)
 - 32-bit microprocessor, 32-bit data bus and 32-bit address bus.
 - 4GB main memory.
 - 20-50MHz. Later at 66 and 100MHz
 - Incorporated an 80386-like microprocessor, 80387-like floating point coprocessor and an 8K byte cache on one package.
 - About half of the instructions executed in 1 clock instead of 2 on the 386.
 - Variations: SX, DX2, DX4.
 - DX₂: Double clocked version:
 - 66MHz clock cycle time with memory transfers at 33MHz.

Recent History

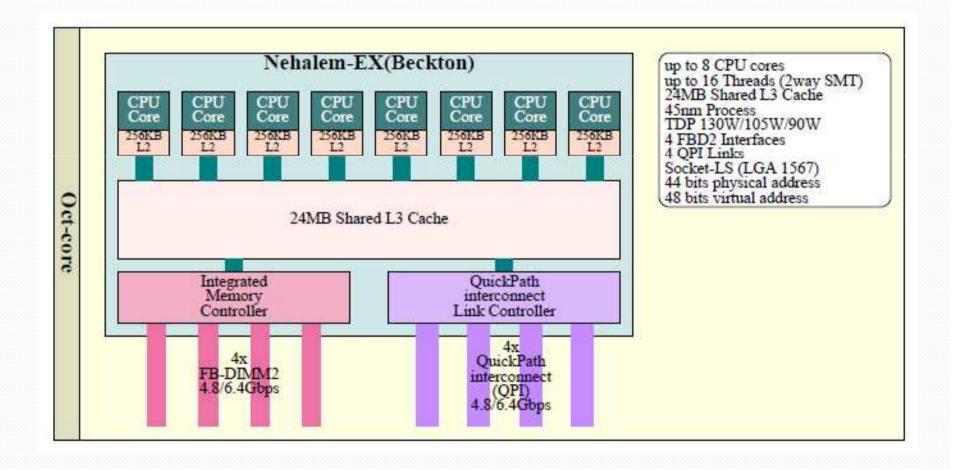

• Pentium: (1993)

- 32-bit microprocessor, 64-bit data bus and 32-bit address bus.
- 4GB main memory.
- 60, 66, 90MHz.
- 1-and-1/2 100MHz version.
- Double clocked 120 and 133MHz versions.
- 16KB L1 cache (split instruction/data: 8KB each).
- Memory transfers at 66MHz (instead of 33MHz).
- Dual integer processors.

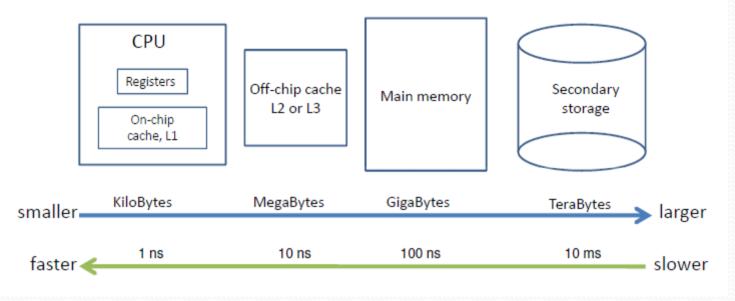

- Pentium Pro: (1995)
 - 32-bit microprocessor, 64-bit data bus and 36-bit address bus.
 - 64GB main memory.
 - Starts at 150MHz.
 - 16KB L1 cache (split instruction/data: 8KB each).
 - 256KB L2 cache.
 - Memory transfers at 66MHz.
 - 3 integer processors.



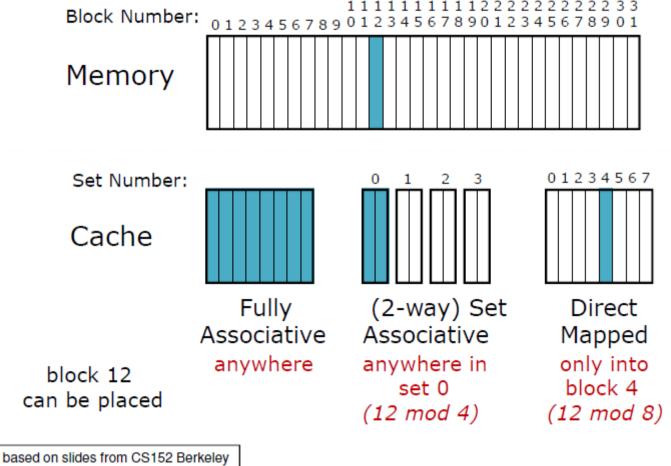
Recent History Cont.



Current Situation


Future

x86 is not really x86


- Basic 8086 architecture is
 - difficult to speed up
 - Too complex
- Current Intel microprocessors use microarchitectures
 - Many Registers
 - All Instructions the same size
 - NetBurst, core, and atom

Memory Hierarchy

- Temporal Locality
- Spatial Locality

Cache Organization

Caches

- Average memory access time = hit time + miss rate* miss penalty
- Example of designing for caches
 - Matlab Matrix Multiplication
- Replacement policy
 - Random, LRU, FIFO, ...
- Write policy
 - Write through, write back
- Unified vs. separate caches
 - Data and instructions together or separate?
- Exclusive vs. inclusive caches
 - Blocks in both L1 and L2?
- Victim caches
 - Stores recently evicted blocks

Instruction Level Parallism

- Pipelining
 - Instruction execution split into stages:
 - Fetch, Decode, Execude, Memory, Write back
 - Many instructions in execution at the same time
 - Just like a factory assembly line
- Superscalar
 - Multiple execution units:
 - 2 integer, 1 floating point, 1 logic
- SIMD (Single Instruction stream, Multible Data stream)
 - Data packed into data word, one instruction produces multiple results

Intel Core Due Q6600

Intel Core 2 Qua	ad Q6600	- 11		1	
		11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	to P	/	
Kentsfield	Brand ID	- (II	ntel	×	7
Socket 775	LGA	Co	re 2		
5 nm Core V	VID 1.263	V Qua		C. A	TEST CON
Intel(R) Core(TM)2 Q	uad CPU Q6	3600 @ 2.4	40GHz		
6 Model	F	Stepping	в	- Watte	
6 Ext. Model	F	Revision	GO	The second se	and the second s
X, SSE, SSE2, SSE3	, SSSE3, EM6	4T			
	Cache			1	41
2394.0 MHz	L1 Data	4 x 32 ł	KBytes		Constanting to a second second
x 9.0	L1 Inst.	4 x 32 ł	KBytes		
266.0 MHz	Level 2	2 x 4096	KBytes		1
1064.0 MHz	Level 3				
cessor#1 ¥	Cores 4	- Three	ds 4	/	Two identi
	5 nm Core V Intel(R) Core(TM)2 Q 6 Model 6 Ext. Model X, SSE, SSE2, SSE3 2394.0 MHz x 9.0 266.0 MHz 1064.0 MHz	Intel(R) Core(TM)2 Quad CPU Q6 6 Model F 6 Ext. Model F X, SSE, SSE2, SSE3, SSSE3, EM6 2394.0 MHz 266.0 MHz 1064.0 MHz Level 3	5 nm Core VID 1.263 V Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.4 6 Model F 6 Ext. Model F 7 Revision 7 X, SSE, SSE2, SSE3, SSSE3, EM64T 2394.0 MHz L1 Data 4 x 32 H 2394.0 MHz L1 Inst. 4 x 32 H 266.0 MHz Level 2 2 x 4096 1064.0 MHz Level 3	5 nm Core VID 1.263 V Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 6 Model F Stepping B 6 Ext. Model F Revision G0 X, SSE, SSE2, SSE3, SSSE3, EM64T 2394.0 MHz 266.0 MHz 266.0 MHz 1064.0 MHz Level 2 2 x 4096 KBytes Level 3	5 nm Core VID 1.263 V Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz 6 Model F Stepping B 6 Ext. Model F Revision G0 X, SSE, SSE2, SSE3, SSSE3, EM64T Cache L1 Data 4 x 32 KBytes L1 Inst. 4 x 32 KBytes Level 2 2 x 4096 KBytes Level 3

Intel Q6600 Cache

PU Cache	Mainboard Memory	SPD About		
1 D-Cache				
Size	32 KBytes	x 4		
Descriptor	8-way set associative,	64-byte line size		
1 I-Cache				
Size	32 KBytes	×4		
Descriptor	8-way set associative, 64-byte line size			
2 Cache				
Size	4096 KBytes	x 2		
Descriptor	16-way set associative, 64-byte line size			
Features				

- Same block size in all caches (64 Bytes)
- Number of blocks
 - L1 ??
 - L2 ??

Multicore processors

- Current processors
 - Intel: 4 cores
 - Sun: 8 cores (UltraSPARC T₂)
- Easier to increase number of cores than increase clock rate
- Software needs to be rewritten to take advantage
- Inevitable that future processors will have 10-100s of cores
 - How many can be efficiently utilized?

Other Topics

- Cache coherence
 - Maintain same data in cache and memory in multiprocessors
- MMX, SSE, SSE₂, SSE₃, SSE₄
 - Additional vectorizing instructions on 32bit floating point numbers in 128bit registers (~300 instr.)
- Hyperthreading
 - Let two threads run at the same time on one processor (two sets of registers, one execution core)