
Yasser F. O. Mohammad

REMINDER 1:Explicit Size Declaration
 The problem:

 mov [ebx], 0

 The solution:

 mov BYTE PTR [ebx],0

 mov WORD PTR [ebx],0

 mov DWORD PTR [ebx],0

REMINDER 2: Addition and Subtraction
 add destination, source

 Dest=dest+source

 sub destination, source
 Dest=dest-source

 inc operand
 operand=operand+1

 dec operand
 operand=operand-1

 neg operand
 Operand=-operand (2’s complement)

 Why 2’s complement???

 Careful: SF does not mean sign if the inputs are unsigned

REMINDER :Signed Multiplication IMUL
 imul source

 AX=AL*operand ; if byte
 DX:AX=AX*operand ; if word
 EDX:EAX=EAX*operand ; if dword
 CF, OF are set if the high order half is significant

 imul register, source
 register=register*source
 CF, OF are set if the result cannot fit into register

 imul register, source, immediate
 register=source*immediate
 CF, OF are set if the result cannot fit into register

REMINDER 4: Signed Division
 idiv divisor

 Same as idiv but quotient takes the sign of the operation

 Sign of the remainder = sign of dividend

 Sign of quotient is negative iff sign of dividend and divisor are different

REMINDER 5: Carry Flag Control

What is it all about?
 Goto

 IF …. THEN ….. ELSE …. END IF

 WHILE

 FOR

Unconditional Jmp
 Jmp statement
 Jmp offset

 Offset = register, or memory location (signed)
 Offset is added to the address of next instruction

 Jmp Types:
 Relative Jump = Interasegment Jump = changes EIP
 Far Jump = Intersegment Jump = changes CS, EIP
 Task Switch = Jump to a different task (privileged)

Offset Type Offset Size Maximum offset

Relative short 4 bytes -2147483648 2147483647

Relative near Single byte -128127

Register indirect 4 bytes -2147483648 2147483647

Memory indirect 4 bytes -2147483648 2147483647

Why do we need relative short jmp?

Unconditional Jump Notes
 Address are cyclic

 0FFFFH +2=0001H

 Relative short maximum displacement

 Before 80386: ±32K

 Since 80386:

 Real mode: ±32K

 Protected mode: ±4G

Unconditional Jump Example
SHORT JUMP: Before 80386 (using IP)

Unconditional Jmp Example
NEAR JUMP: Before 80386 (using IP)

Unconditional Jmp Example

 JMP FAR PTR Address

FAR JUMP: Before 80386 (using IP)

Jmp miscellaneous info
 Jmp $+4

 Jump 4 bytes after next instruction

Conditional Jump
 J* targetStatement

 * identifies the condition to take the jump

Reading/Writing in DOS*
 Reading one character to AL

 MOV AH, 1

 INT 21H

 Writing one character from DL

 MOV AH, 2

 INT 21H

Conditional JMP EXAMPLE

Conditional Jumps

Comparing things
 CMP source1, source2

 source1-source2

 Adjusts Flags

 Usually used before conditional jumps

 Immediates comes next

 Has relative short, relative near jumps

Interpreting Flags

Conditional Jump Instructions

Conditional Jump Instructions 2

Conditional Jump Instructions 3

Example Conditional Jump 1

Example Conditional Jump 2

Example Conditional Jump 3

While Loop Using Jump

Example While Loop 1

Example While Loop 2

<

Example While Loop 3

For Loop using JUMP

Until using JUMP

Endless loop with a break

Conditional Set Instructions*

LOOP instruction
 loop statement

 Statetement must be short distance from the instruction (-
128 127 bytes)

 Does the following:
 ECX=ECX-1
 If ECX==0 then continue to next statement
 If ECX ≠ 0 then jump to statement

 Similar to a high level For-Loop with count in ECX
for(; ECX>0; ECX--){

.

.
}

Example Loop 1

Example Loop 2
 Count is stored in memory location number

 What is wrong?

Example Loop 2 Corrected
 Count is stored in memory location number

Example Loop 2 Another Correction
 Count is stored in memory location number

Large For Loops using JUMP

Forward For Loop

Loop instruction variants
 loope/loopz statement
 Does the following:
 ECX=ECX-1

 If ECX==0 AND ZF==1 then continue to next statement

 If ECX ≠ 0 OR ZF==0 then jump to statement

 loopne/loopnz statement
 Does the following:
 ECX=ECX-1

 If ECX==0 OR ZF==1 then continue to next statement

 If ECX ≠ 0 AND ZF==0 then jump to statement

Why Loop variants?

Putting It All Together
 Read a set of nonzero numbers

until you read a zero.

 Calculate their average.

 Print all numbers over the
average.

Big Number Printer in Assembly

