Hashing

- 1. Find examples when it is better to have the following combinations of services (if any):
 - a. Confidentiality without authentication
 - b. Authentication without confidentiality
 - c. Authentication without integrity
 - d. Integrity without authentication
- 2. What is the difference between weak and strong collision resistance?
- 3. What characteristics are needed in a secure hash function?
- 4. In what ways can a hash value be secured so as to provide message authentication?
- 5. What is the differences between MAC, HMAC and One way hash functions
- 6. Consider the following hash function. Messages are in the form of a sequence of decimal numbers, $M = (a_1, a_2,..., a_n)$. The hash value h is calculated as $h = \sum_{i=1}^{n} a_i \mod n$, for some predefined value n.
 - a. Does this hash function satisfy any of the requirements for a hash function? Explain your answer.
 - b. Repeat for the hash function $h_2 = \sum_{i=1}^{n} a_i^2 \mod n$
 - c. Calculate the hash function of part (b) for M = (189, 632, 900, 722, 349) and n = 989.
- 7. What should B do to confirm the source and integrity (if possible) of the message M in the following exchanges:
 - a. $A \rightarrow B: M + E(k_{AB}, H(M))$
 - b. $A \rightarrow B : M + E_{Pub} \left(k_A^{Private}, H(M) \right)$
 - c. $A \rightarrow B : M + H(S + M)$
- 8. For the three exchanges in problem 8, Discuss the advantages and disadvantages of these three arrangements for providing authentication using hash functions.