## Faculty of Computers and Information <br> Assiut University <br> IT 422

## Public Key Encryption

1. In a public-key system using RSA, you intercept the ciphertext $\mathrm{C}=10$ sent to a user whose public key is $e=5, n=35$. What is the plaintext $M$ ?
2. Suppose Bob uses the RSA cryptosystem with a very large modulus $n$ for which the factorization cannot be found in a reasonable amount of time. Suppose Alice sends a message to Bob by representing each alphabetic character as an integer between 0 and $25(\mathrm{~A} \rightarrow 0, \ldots, \mathrm{Z} \rightarrow 25$ ), and then encrypting each number separately using RSA with large e and large n . Is this method secure? If not, describe the most efficient attack against this encryption method.
3. Users A and B use the Diffie-Hellman key exchange technique with a common prime $\mathrm{q}=$ 71 and a primitive root $\alpha=7$.
a. If user A has private key $X_{A}=5$, what is A's public key $\mathrm{Y}_{\mathrm{A}}$ ?
b. If user $B$ has private key $X_{B}=12$, what is $B$ 's public key $Y_{B}$ ?
c. What is the shared secret key?
4. Is 3 a primitive root of 11 ? Why?
5. In an RSA system, the public key of a given user is $\mathrm{e}=31, \mathrm{n}=3599$. What is the private key of this user? Hint: You will need extended Euclidean algorithm to find the multiplicative inverse of 31 modulo $\phi(\mathrm{n})$.
6. True or False (and why?)
a. Integrity can be achieved without message authentication.
b. ECC can be used to provide confidentiality.
c. For a public key system to work properly, it should not be possible (practically) to learn either of the two keys from each other.
d. Man-In-The-Middle Attack can be used to defeat the security of Diffie-Hellman exchange.
7. In 1985, T. ElGamal announced a public-key scheme based on discrete logarithms. As with Diffie-Hellman, the global elements of the ElGamal scheme are a prime number $q$ and $\alpha$, a primitive root of $q$. A user A selects a private key $X_{A}$ and calculates a public key $\mathrm{Y}_{\mathrm{A}}$ as in Diffie-Hellman. User A encrypts a plaintext $\mathrm{M}<\mathrm{q}$ intended for user B:
8. Choose a random integer k such that $1 \leq k \leq q-1$.
9. Compute $K=\left(Y_{B}\right)^{k} \bmod q$.
10. Encrypt M as the pair of integers $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$ where $\mathrm{C}_{1}=\alpha^{\mathrm{k}} \operatorname{modq}, \mathrm{C}_{2}=\mathrm{KM} \operatorname{modq}$

User B recovers the plaintext as follows:

1. Compute $K=\left(C_{1}\right)^{X}{ }_{B} \bmod q$.
2. Compute $\mathrm{M}=\left(\mathrm{C}_{2} \mathrm{~K}^{1}\right) \bmod \mathrm{q}$.

Show that the system works; that is, show that the decryption process does recover the plaintext.

