Kerberos

- 1. What is the role of AS and TGS in Kerberos 4?
- 2. What is the difference between TGS and TGT in Kerberos 4?
- 3. Why does Kerberos require a loosely synchronized network?
- 4. Suggest a method to achieve interrealm authentication in a network with N Kerberos servers with less than N(N-1) keys.
- 5. Suggest a situation in which authentication forwarding is useful.
- 6. What is a nonce and what is the difference between it and a timestamp?
- 7. Kerberos 5 uses nonces. Does this mean that it needs no timestamps? Why?
- 8. What are the three main exchanges in Kerberos? Explain each of them briefly (no more than 2 lines each).
- 9. Can we use AES with Kerberos 4? Can we use it with Kerberos 5? How in each case?
- 10. In Kerberos 4 exchange, What happens if we do the following modifications:
 - a. Remove TS₂ from message 2 (leaving it inside the ticket)
 - b. Remove AD_c from Authenticator_c
 - c. Replace TS₅+1 with TS₅ in message six
 - d. Replace TS₅+1 with 2*TS₅ in message six
 - e. Transfer Ticket_{tgs} in plain in message 2
 - f. Remove message 6 altogether
 - g. Encrypt Ticket $_v$ with K_{tgs} rather than K_v
 - h. Encrypt Ticket_v with $K_{c,v}$ rather than K_v
 - i. Transfer Ticket_v in plain in message 4

Kerberos 4 Exchange

(1) C →AS	$ ID_c ID_{tgs} TS_1 $
(2) AS → C	$E(K_c, [K_{c,tgs} ID_{tgs} TS_2 Lifetime_2 Ticket_{tgs}])$
(3) C → TGS	ID _v Ticket _{tgs} Authenticator _c
(4) TGS→C	$E(K_{c,tgs}, [K_{c,v} ID_v TS_4 Ticket_v])$
(5) C → V	Ticket _v Authenticator _{c2}
(6) V → C	$E(K_{c,v}, [TS_5 + 1])$
where	$\label{eq:tigs} \boxed{ \text{Ticket}_{tgs} = E(K_{tgs}, [K_{c,tgs} ID_c AD_c ID_{tgs} TS_2 Lifetime_2]) }$
	$\label{eq:control_equation} \begin{split} & Ticket_v = E(K_v, [K_{c,v} ID_C AD_C ID_v TS_4 Lifetime_4]) \end{split}$
	Authenticator _c = $E(K_{c,tgs}, [ID_C AD_C TS_3])$
	Authenticator _{c2} = $E(K_{c,v},[ID_c AD_C TS_5])$