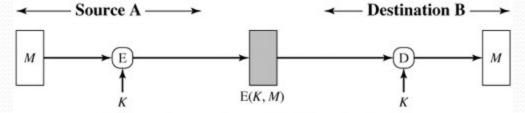
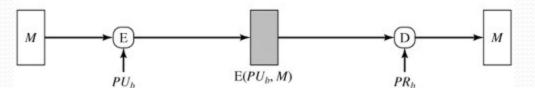
IT 422 Network Security Public Key Cryptography Yasser F. O. Mohammad

REMINDER 1: Different Uses of

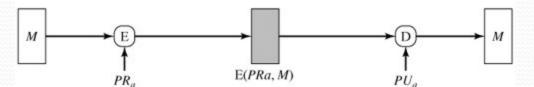
Encryption



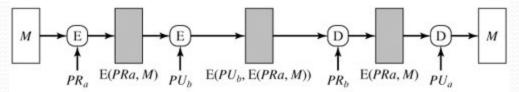
(a) Symmetric encryption: confidentiality and authentication



(b) Public-key encryption: confidentiality



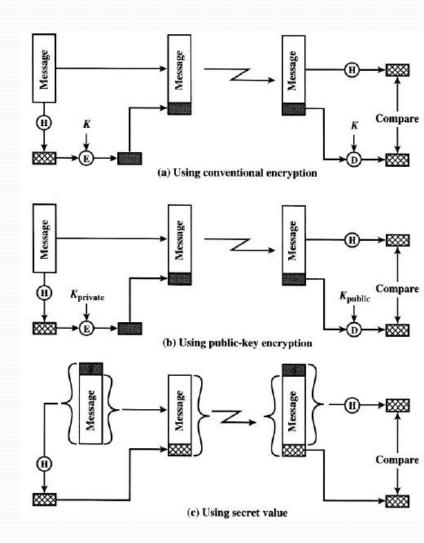
(c) Public-key encryption: authentication and signature



REMINDER: One Way Hash

Functions

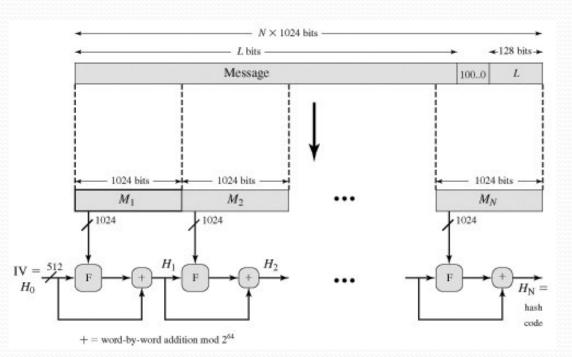
- a) Only we know *k*
 - Most conventional
- b) Uses Public Keys only
 - Offers Nonrepudiation
 - No key distribution
- c) Only we know the secret
 - No encryption
 - Used in HMAC adopted by IP security
- Why No Encryption?
 - *I.* Encryption is slow
 - 2. Encryption is expensive
 - 3. Encryption is optimized for large
 - 4. Patents & export control

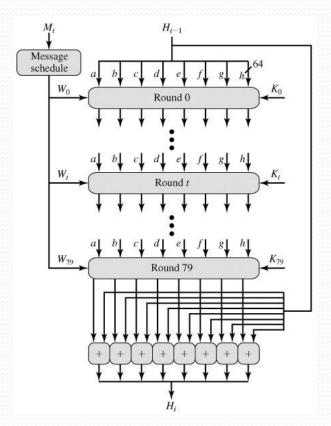


REMINDER 3: Modern Hash

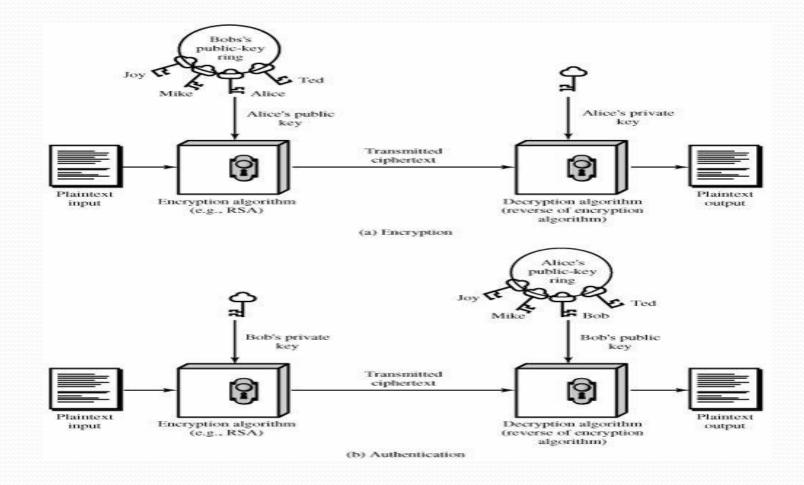
Functions

- SHA-1 (self read the algorithm)
 - Maximum input is 2^{64}
 - Digest size = 160 bits
 - Block size is 512 or 1024 bits





Public Key Encryption



Public vs. Shared Key

Conventional Encryption

Public-Key Encryption

Needed to Work:

- The same algorithm with the same key is used for encryption and decryption.
- The sender and receiver must share the algorithm and the key.

Needed to Work:

- One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.
- The sender and receiver must each have one of the matched pair of keys (not the same one).

Needed for Security:

- 1. The key must be kept secret.
- It must be impossible or at least impractical to decipher a message if no other information is available.
- Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key.

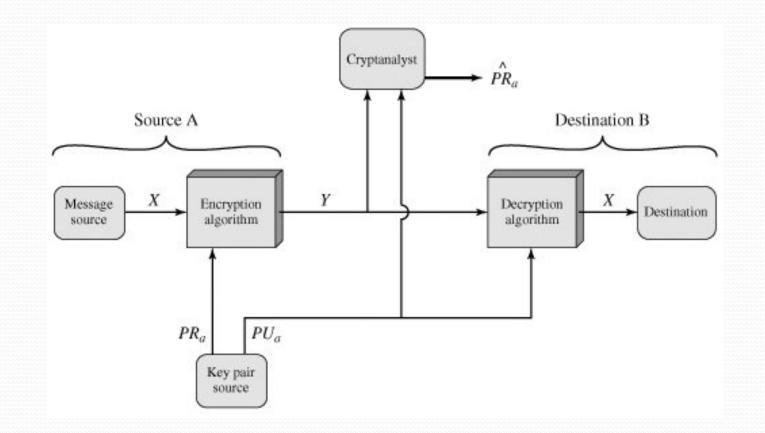
Needed for Security:

- One of the two keys must be kept secret.
- It must be impossible or at least impractical to decipher a message if no other information is available.
- Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.

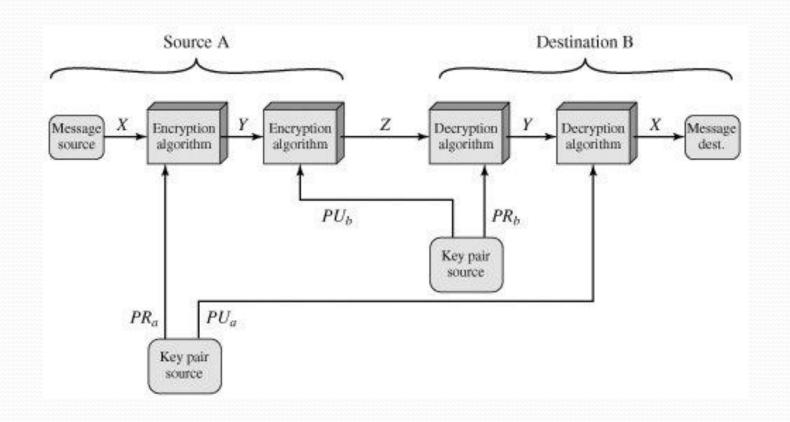
Uses of Public Key Encryption

- Encryption/Decryption
- Digital Signature
- Shared-Key Exchange

Public Key for Authentication



Public Key for Confident. + Auth.



Applications of Public Key Systems

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Requirements of Public Key Systems

- Easy to generate key pairs
- Easy to encrypt and decrypt
- Knowing the public key we cannot guess the private key
- Knowing a cipher and the public key we cannot get the plain text
- [Optional] the two keys can be applied in either order

RSA

- Developed in 1977
- By
 - Ron Rivest
 - Adi Shamir
 - Len Adelman
- Plain and ciphertexts are numbers between 0 and 2ⁿ 1 (usually n=1024)
- General Purpose Public Key system
- Depends on the difficulty to factorize large numbers

RSA Algorithms

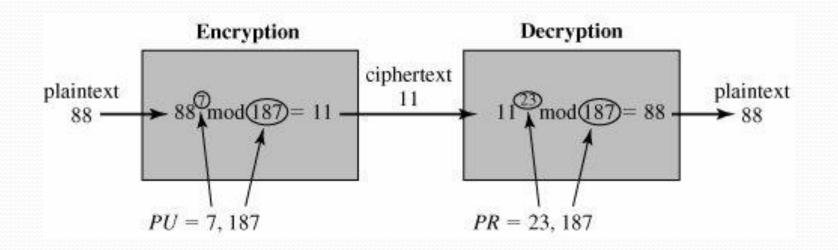
Key Generation		
Select p, q	p and q both prime, $p \neq q$	
Calculate $n = p \times q$		
Calculate $\phi(n) = (p-1)($	(q - 1)	
Select integer e	$gcd(\phi(n), e) = 1; 1 \le e \le \phi(n)$	
Calculate d	$d \equiv e^{-1} (\mathrm{mod} \phi(n))$	
Public key	$PU = \{e, n\}$	
Private key	$PR = \{d, n\}$	

Encryption		
Plaintext:	M < n	
Ciphertext:	$C = M^{e} \mod n$	

	Decryption	
Ciphertext:	С	
Plaintext:	$M = C^d \mod n$	

Example

- p=17, q=11
- n=pq=187
- $\Phi(n) = (p-1)^*(q-1) = 160$
- e is prime less than $\Phi(n)$ and $GCD(\Phi(n),e)=1$ (e.g. 7)
- $d=e^{-1}\mod \Phi(n)=23$ (23*7=161)



How to Break RSA?

- **1.** Factorize n = Find p and q.
- 2. Find $\Phi(n) = (p-1)^*(q-1)$
- 3. Find $d=e^{-1} \mod \Phi(n)$

Now you have the private key!!!!

The only problem is that it is mathematically very difficult to factorize n.

Diffie-Hellman

- Published by Diffie and Hellman in 1976
- First Public Key algorithm
- Can be used only for key exchange
- Depends on the difficulty to calculate discrete logarithms

What is a discrete logarithm?

• *a* is a primitive root of a prime number *p* iff its powers generate all numbers from *1* to *p*-*1*.

equal 1, 2,, *p*-mod q, a^{p-1} mod p

- For every integer b < p and a primitive root a of the prim p there exist a unique number i where: $b = a^i \mod p$ where $o \le i \le (p-1)$
- Discrete logarithm $dlog_{a,p}(b)=i$ where $b = a^i \mod p$
- This is difficult and slow!!

Diffie-Hellman

- The point is that users A and B will be able to calculate the secret key using only:
 - 1. His private key
 - 2. Other's public key
 - Eve needs to do a discrete logarithm because she does not have any of the private keys.

Global Public Elements			
q	prime number		
α	$\alpha < q$ and α a primitive root of q		

User A	Key Generation
Select private X_A	$X_A < q$
Calculate public Y_A	$Y_A = \alpha^{X_A} \mod q$

User B	Key Generation	
Select private X_B	$X_B < q$	
Calculate public Y_B	$Y_B = \alpha^{X_B} \operatorname{mod} q$	

Calculation of Secret Key by User A

 $K = (Y_B)^{X_A} \mod q$

Calculation of Secret Key by User B

 $K = (Y_A)^{X_B} \bmod q$

Why it works?

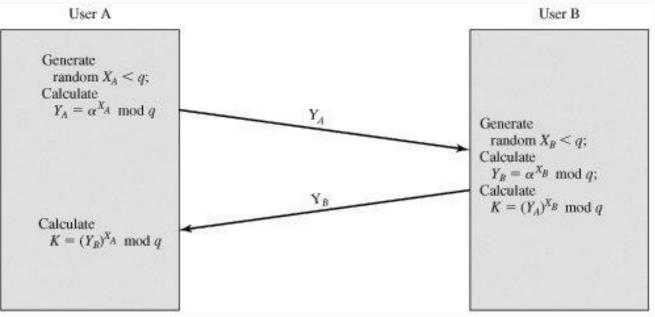
- $K = (Y_B)^{X_A} \mod q$
 - $= (\alpha^{\chi_{\mathfrak{s}}} \bmod q)^{\chi_{\mathfrak{s}}} \bmod q$
 - $= (\alpha^{\chi_{\mathfrak{s}}})^{\chi_{\mathfrak{s}}} \bmod q$
 - $= (\alpha^{\chi_{\varepsilon}\,\chi_{\star}} \bmod q$
 - $= (\alpha^{\chi_s})^{\chi_s} \mod q$
 - $= (\alpha^{\chi_{\mathfrak{s}}} \bmod q)^{\chi_{\mathfrak{s}}} \bmod q$
 - $= (Y_A)^{\chi_s} \mod q$

by the rules of modular arithmetic

Numeric example

- q=71
- α=7
- X_A=5
- X_B=12
- $Y_A = 7^5 \mod{71} = 51$
- $Y_B = 7^{12} \mod{71} = 4$
- K=4⁵mod71=51¹²mod71=30

Key exchange using Diffie-Hellman



• Can be broken using Man-in-the-Middle Attack

Man-in-the-Middle Attack

 $A \rightarrow E : Y_A$ $E \rightarrow B : Y_{D1}$ $\begin{cases} E: K_2 = Y_A^{X_{D2}} \mod q \\ B: K_1 = Y_{D1}^{X_B} \mod q \end{cases}$ $B \rightarrow E : X_A$ $E \rightarrow A : Y_{D2}$ $\begin{cases} E: K_1 = Y_B^{X_{D1}} \mod q \\ A: K_2 = Y_{D2}^{X_A} \mod q \end{cases}$

Now E has K_1 shared with B and K_2 shared with A

A and B think that they share the key with each other

$$A \to E : E(K_2; M)$$

$$E \to B : E(K_1; M)$$

or $E \to B : E(K_1; M')$

Other Public Key systems

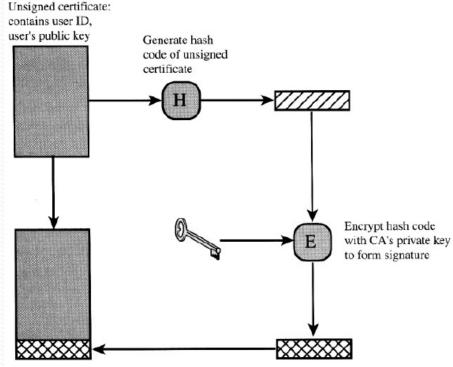
- Digital Signature Standard (DSS)
 - Only for signature
- Elliptic Curve Cryptography (ECC)
 - General Purpose Public Key Encryption Algorithm
 - More difficult to understand than RSA
 - Provides similar security for smaller key size
 - Not tested as much as RSA

Digital Signatures

- 1. Encrypt Whole message
 - $C = Ep(Pr_A:M)$
 - C and M must be kept to prove the signature
 - C provides NO confidentiality. Why?
- 2. Encrypt an authenticator
 - $C=Ep(Pr_A:H(M))$
 - Only M and H(M) need to be kept
 - H used is usually SHA-1
 - No confidentiality. Why?

Distribution of Public Keys

- Public Key Certificates
- CA=Certification Authority
- CA's sign public keys of users with its private key
- X.509 standard
- Used in SSL, Secure Electronic Transaction (SET), S/MIME



Signed certificate: Recipient can verify signature using CA's public key.

Distribution Shared Keys

- 1. Use Diffie-Hellman
- 2. Use Public Key Encryption (Like RSA or ECC) $A \rightarrow B: E(k, M) + E_p(K_B^{pub}, k)$

Can you see any problem in this exchange in terms of authentication?