MTR08114 Robotics

Rotation

Yasser F. O. Mohammad

REMINDER 1: How To Do It

- Problem 1
- Make our goal mathematical ... From words to equations (and back!!)

- This is called Representation and will be our first task

- Examples:
- How to represent all points of the robot as compactly as possible?
- How to represent a rotation in space?
- How can we move between different vintage points (reference frames)?
\qquad

Representing Location

- p is a point
- p^{o} is the point p with respect to y_{0} reference frame $x_{o} y_{o}$
- v_{d} is a vector specifying the distance and direction of p with respect to origin o_{o}

- Free vectors have no position
- Points have no direction
- Vectors $=$ Points

Coordinate Conventions

- To use algebraic operations all vectors MEST be in the same frame (has same super script)

Representing Rotation

- Solution 1
- Just Specify Θ
- Disadvantage
- Discontinuous
- Does Not Scale

- Solution 2
- Rotation Matrix

Rotation Matrix

$$
R_{1}^{0}=\left\lfloor x_{1}^{0} \mid y_{1}^{0}\right\rfloor
$$

$$
R_{1}^{0}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

$$
R_{1}^{0}=\left[\begin{array}{ll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0}
\end{array}\right]
$$

Direction Cosines

Properties of Rotation Matrices

SO(n) = Special Orthogonal Group of Order n

- $R \in S O(n)$
- $R^{-1} \in S O(n)$
- $R^{-1}=R^{T}$
- The columns (and therefore the rows) of R are mutually orthogonal
- Each column (and therefore each row) of R is a unit vector
- $\operatorname{det} R=1$

$$
\begin{aligned}
{\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right] } & =\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& =\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]^{T}
\end{aligned}
$$

Rotation in 3D

$$
R_{1}^{0}=\left[\begin{array}{ccc}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]
$$

Rotation Around Z axis

$$
R_{1}^{0}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Rotation Around x and y

$$
\begin{aligned}
& R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y, \theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
\end{aligned}
$$

Rotational Transformation

$$
\begin{aligned}
p & =u x_{1}+v y_{1}+w z_{1} \\
p^{0} & =\left[\begin{array}{l}
p \cdot x_{0} \\
p \cdot y_{0} \\
p \cdot z_{0}
\end{array}\right] \\
p^{0} & =\left[\begin{array}{l}
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot x_{0} \\
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot y_{0} \\
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot z_{0}
\end{array}\right] \\
& =\left[\begin{array}{lll}
u x_{1} \cdot x_{0}+v y_{1} \cdot x_{0}+w z_{1} \cdot x_{0} \\
u x_{1} \cdot y_{0}+v y_{1} \cdot y_{0}+w z_{1} \cdot y_{0} \\
u x_{1} \cdot z_{0}+v y_{1} \cdot z_{0}+w z_{1} \cdot z_{0}
\end{array}\right] \\
& =\left[\begin{array}{lll}
x_{1} \cdot x_{0} & y_{1} \cdot x_{0} & z_{1} \cdot x_{0} \\
x_{1} \cdot y_{0} & y_{1} \cdot y_{0} & z_{1} \cdot y_{0} \\
x_{1} \cdot z_{0} & y_{1} \cdot z_{0} & z_{1} \cdot z_{0}
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]
\end{aligned}
$$

Rotation of rigid objects

$$
\begin{array}{ll}
R_{1}^{0}=R_{z, \pi}=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] & p_{b}^{1}=p_{a}^{0} \\
p_{b}^{0}=R_{z, \pi} p_{b}^{1} & p_{b}^{0}=R_{z, \pi} p_{c}^{0} \\
p_{b}^{0}=R_{z, \pi} p_{a}^{0} &
\end{array}
$$

Meanings of R

1. It represents a coordinate transformation relating the coordinates of a point p in two different frames.
2. It gives the orientation of a transformed coordinate frame with respect to a fixed coordinate frame.
3. It is an operator taking a vector and rotating it to a new vector in the same coordinate system.

Composition of Rotations

$$
\begin{aligned}
p^{0} & =R_{1}^{0} p^{1} \\
p^{1} & =R_{2}^{1} p^{2} \\
p^{0} & =R_{2}^{0} p^{2} \\
p^{0} & =R_{1}^{0} R_{2}^{1} p^{2}
\end{aligned}
$$

$$
R_{2}^{0}=R_{1}^{0} R_{2}^{1}
$$

Example Composition

- Rotation around y axis followed by a rotation around the new z axis

$$
\begin{aligned}
R & =R_{y, \phi} R_{z, \theta} \\
& =\left[\begin{array}{ccc}
c_{\phi} & 0 & s_{\phi} \\
0 & 1 & 0 \\
-s_{\phi} & 0 & c_{\phi}
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & -s_{\theta} & 0 \\
s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\phi} c_{\theta} & -c_{\phi} s_{\theta} & s_{\phi} \\
s_{\theta} & c_{\theta} & 0 \\
-s_{\phi} c_{\theta} & s_{\phi} s_{\theta} & c_{\phi}
\end{array}\right]
\end{aligned}
$$

Example composition 2

- Rotation around z axis followed by rotation around the new y axis

$$
\begin{aligned}
R^{\prime} & =R_{z, \theta} R_{y, \phi} \\
& =\left[\begin{array}{ccc}
c_{\theta} & -s_{\phi} & 0 \\
s_{\theta} & c_{\theta} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\phi} & 0 & s_{\phi} \\
0 & 1 & 0 \\
-s_{\phi} & 0 & c_{\phi}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\phi} & -s_{\theta} & c_{\theta} s_{\phi} \\
s_{s} c_{\phi} & c_{\theta} & s_{\theta} s_{\phi} \\
-s_{\phi} & 0 & c_{\phi}
\end{array}\right]
\end{aligned}
$$

Rotation in Fixed Frame

- Rotation around one axis in a frame followed by another rotation around another axis in the ORIGINAL frame

$$
R_{2}^{0}=R_{1}^{0}\left[\left(R_{1}^{0}\right)^{-1} R R_{1}^{0}\right]=R R_{1}^{0}
$$

Composition of Rotations in Fixed

 Frame- Same as in current frame but with reversed order

$$
R_{2}^{0}=R_{1}^{0}\left[\left(R_{1}^{0}\right)^{-1} R R_{1}^{0}\right]=R R_{1}^{0}
$$

- Why R was not called $R_{2}{ }^{1}$????????

Example of Rotation composition

Suppose R is defined by the following sequence of basic rotations in the order specified:

1. A rotation of θ about the current x-axis
2. A rotation of ϕ about the current z-axis
3. A rotation of α about the fixed z-axis
4. A rotation of β about the current y-axis
5. A rotation of δ about the fixed x-axis

In order to determine the cumulative effect of these rotations we simply begin with the first rotation $R_{x, \theta}$ and pre- or post-multiply as the case may be to obtain

$$
\begin{equation*}
R=R_{x, \delta} R_{z, \alpha} R_{x, \theta} R_{z, \phi} R_{y, \beta} \tag{2.24}
\end{equation*}
$$

