MTR08114 Robotics

 KinematicsYasser F. O. Mohammad

REMINER 1: Rotation

Representation

1. Direction Cosines
2. Eular Angle
3. Roll-Pitch-Yaw
4. Axis/Angle

Any 3D object possesses only 3 rotational degrees of freedom

REMINDER 2: Rigid Transformation

2
$p^{0}=R_{1}^{0} p^{1}+d_{1}^{0}$

$$
p^{0}=R_{1}^{0} p^{1}+d_{1}^{0}
$$

$$
p^{1}=R_{2}^{1} p^{2}+d_{2}^{1}
$$

$$
p^{0}=R_{1}^{0} R_{2}^{1} p^{2}+R_{1}^{0} d_{2}^{1}+d_{1}^{0}
$$

$$
p^{0}=R_{2}^{0} p^{2}+d_{2}^{0}
$$

REMINDER 3: Inverse Homogeneous

$$
\begin{aligned}
H^{-1} & =\left[\begin{array}{cc}
R^{T} & -R^{T} d \\
0 & 1
\end{array}\right] \\
P^{0} & =\left[\begin{array}{c}
p^{0} \\
1
\end{array}\right] \\
P^{1} & =\left[\begin{array}{c}
p^{1} \\
1
\end{array}\right] \\
P^{0} & =H_{1}^{0} P^{1}
\end{aligned}
$$

REMINDER 4: Composition Rules

- Around current axis

$$
H_{2}^{0}=H_{1}^{0} H
$$

- Around fixed axis

$$
H_{2}^{0}=H H_{1}^{0}
$$

Manipulator/ Kinematic Chain

Joint Variables

$$
q_{i}=\left\{\begin{array}{rc}
d_{i} & \text { prismatic } \\
\theta_{i} & \text { revolute }
\end{array}\right.
$$

Steps of Kinematic Analysis

1. Attach frame $i<o_{i} x_{i} y_{i} z_{i}>$ to link i.

- Coordinates of points in link i in frame i are constant

2. Find the transformation from each frame to the next

- Origin of frame i in frame $i-1$
- $A_{j}=T_{j}^{j-1}=A_{j}\left(q_{j}\right)$

3. Find the end effector origin in the base frame

- $T_{n}^{0}=T_{1}^{0} T_{2}^{1} \ldots \ldots . T_{n-1}^{n-2} T_{n}^{n-1}$

$$
\begin{aligned}
T_{j}^{i} & =A_{i+1} \cdots A_{j}=\left[\begin{array}{cc}
R_{j}^{i} & o_{j}^{i} \\
0 & 1
\end{array}\right] \\
R_{j}^{i} & =R_{i+1}^{i} \cdots R_{i}^{j-1} \\
o_{j}^{i} & =o_{j-1}^{i}+R_{j-1}^{i} o_{j}^{j-1}
\end{aligned}
$$

Link Description

Constants once design is done

Intersecting axes

- What is the common normal??????
- Normal to the plane containing both axes
- Which direction
- Direction of end effector
- What is the twist

- Angle in this plane

Joint parameters

VARIABLE once design is done Constant per configuration

Denavit-Hartenberg Parameters

- Constants by design
- Link twist α_{i}
- Link length a_{i}
- Joint parameters
- Link Offset
- Joint Angle

(variable in prismatic)

(variable in revolute)

- All frame transformations are functions in these four parameters

Frame Placement

- Z along the axis
- X points to next frame
- Origin in X,Z intersection
- Y using right hand rule

The four six dilemma

- Homogeneous transformation needs 6 parameters
- DH parameters are 4
- Yet DH parameters are enough!!!!
- HOW?
- We have two assumptions:
- X_{i} is perpendicular to $\mathrm{Z}_{\mathrm{i}-1}$
- X_{i} intersects $\mathrm{Z}_{\mathrm{i}-1}$

DH (All together)

DH parameters summary

a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance (x_{i-1}, x_{i}) along z_{i}
θ_{i} : angle ($\mathbf{x}_{\mathrm{i}-1}, \mathbf{x}_{\mathrm{i}}$) about z_{i}

Frame transformation from DH

$$
\begin{aligned}
A_{i} & =\text { Rot }_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}} \\
& =\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\
s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Notes about placement

- Z_{i} and $\mathrm{Z}_{\mathrm{i}-1}$ are not coplanar
- Unique common perpendicular (unique a_{i-1} and α_{i-1}).
- Z_{i} and $\mathrm{Z}_{\mathrm{i}-1}$ are parallel
- Infinite number of possible perpendicular. We put the origin as we like to simplify the equations ($\alpha_{i}=0$).
- Z_{i} and $\mathrm{Z}_{\mathrm{i}-1}$ are intersecting
- X_{i} is chosen normal to the common plane in the direction of end effector ($a_{i}=0$)

First and Last Frames

- Frames 1 to n correspond to the n joints
- Frame o corresponds to the base (no need to be on the base!!)
- Frame n+1 corresponds to end effector (no need to be on it!!)
- Rule: maximize zeros to simplify forward kinematics
- How?
- Put frame o's origin, X , and Z in the same location as frame 1 when its variable is zero
- Put frame $\mathrm{n}+1$'s origin, X , and Z in the same location as frame n when its variable is zero

First and Last Link's a \& α

a_{i} and α_{i} depend on joint axes i and $i+1$
Axes 1 to n : determined
$\longrightarrow a_{1}, a_{2} \ldots a_{n-1}$ and $\alpha_{1}, \alpha_{2} \ldots \alpha_{n-1}$
Convention: $a_{0}=a_{n}=0$ and $\alpha_{0}=\alpha_{n}=0$

Used with modification from Osama El Khatib's Standford's Intro to Robotics course material

First \& Last Link's d and Θ

θ_{i} and d_{i} depend on links $i-1$ and i
$\longmapsto \theta_{2}, \theta_{3}, \ldots, \theta_{n-1}$ and $d_{2}, d_{3}, \ldots, d_{n-1}$
Convention: set the constant parameters to zero
Following joint type: d_{1} or $\theta_{1}=0$ and d_{n} or $\theta_{\mathrm{n}}=0$

Placement of Base Frame

$$
\begin{aligned}
& a_{0}=0 \\
& \alpha_{0}=0 \\
& d_{1}=0 \\
& \theta_{1}=0 \longrightarrow\{0\} \equiv\{1\}
\end{aligned}
$$

Prismatic

$$
a_{0}=0
$$

$$
\alpha_{0}=0
$$

$$
\theta_{1}=0
$$

$$
d_{1}=0 \longrightarrow\{0\} \equiv\{1\}
$$

Used with modification from Osama El Khatib's Standford's Intro to Robotics course material

End Effector's frame

Used with modification from Osama El Khatib's Standford's Intro to Robotics course material

Placement of End Effector

- If specified use the specified frame
- If not specified:
- Put the origin with the origin of frame n
- Align Z and X with frame n's Z and X when joint variable n is zero

Placement of Last Frame Summary

Revolute $d_{n}=0$
$\theta_{n}=0 \rightarrow x_{n}=x_{n-1}$

Prismatic

Example RRR

Link	$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}$	$\Theta_{\boldsymbol{i}}$
0	o	o	-	-
1	L_{1}	o	o	Θ_{1}
2	L_{2}	o	o	Θ_{2}
3	o	o	o	Θ_{3}

1. Place Zs
2. Place Xs
3. Place Origins
a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance $\left(x_{i-1}, x_{i}\right)$ along z_{i}
θ_{i} : angle $\left(\mathbf{x}_{\mathrm{i}-1}, \mathbf{x}_{\mathrm{i}}\right)$ about \mathbf{z}_{i}

Planar Elbow

a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance (x_{i-1}, x_{i}) along z_{i}
θ_{i} : angle $\left(\mathbf{x}_{\mathrm{i}-1}, \mathbf{x}_{\mathrm{i}}\right)$ about \mathbf{z}_{i}

\section*{3-Link Cylindrical M.
 | Link | a_{i} | α_{i} | d_{i} | Θ_{i} |
| :---: | :---: | :---: | :---: | :---: |
| 1 | o | o | a_{1} | Θ_{1} |
| 2 | o | -90 | d_{2} | o |
| 3 | o | o | d_{3} | o |
 \[

A_{1}=\left[$$
\begin{array}{cccc}
c_{1} & -s_{1} & 0 & 0 \\
s_{1} & c_{1} & 0 & 0 \\
0 & 0 & 1 & d_{1} \\
0 & 0 & 0 & 1
\end{array}
$$\right] \quad A_{2}=\left[$$
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}
$$\right]
\]
 }

$$
\begin{aligned}
A_{3} & =\left[\begin{array}{lllc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
T_{3}^{0}=A_{1} A_{2} A_{3} & =\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & -s_{1} d_{3} \\
s_{1} & 0 & c_{1} & c_{1} d_{3} \\
0 & -1 & 0 & d_{1}+d_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
A_{i}=\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{i_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{i} i_{i_{i}} & a_{i} s_{i} s_{i} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0
\end{array}\right.
$$

a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance $\left(x_{i-1}, x_{i}\right)$ along z_{i}
θ_{i} : angle $\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right)$ about z_{i}

Spherical Wrist

$A_{i}=\left[\begin{array}{cccc}c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1\end{array}\right]$
a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance (x_{i-1}, x_{i}) along z_{i}
$\theta_{\mathrm{i}}:$ angle $\left(\mathbf{x}_{\mathrm{i}-1}, \mathbf{x}_{\mathrm{i}}\right)$ about \mathbf{z}_{i}

Cylindrical Manipulator with Spherical Wrist

Link	$\boldsymbol{a}_{\boldsymbol{i}}$	$\boldsymbol{\alpha}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i}}$	$\Theta_{\boldsymbol{i}}$
$\mathbf{1}$	o	o	a_{1}	Θ_{1}
2	o	-90	d_{2}	o
3	o	o	d_{3}	o
4	o	-90	o	Θ_{4}
5	o	90	o	Θ_{5}
6	o	o	a_{6}	Θ_{6}

a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance $\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right)$ along z_{i}
θ_{i} : angle $\left(\mathbf{x}_{\mathrm{i}-1}, \mathbf{x}_{\mathrm{i}}\right)$ about \mathbf{z}_{i}

Stanford Arm

()$_{\theta_{1}}$

Link	a_{i}	α_{i}	d_{i}	Θ_{i}
1	o	-90	o	Θ_{1}
2	o	90	a_{2}	Θ_{2}
3	o	o	d_{3}	o
4	o	-90	o	Θ_{4}
5	o	90	o	Θ_{5}
6	o	o	a_{6}	Θ_{6}

$$
A_{i}=\left[\begin{array}{cccc}
c_{\theta_{i}} & -s_{\theta_{i}} c_{\alpha_{i}} & s_{\theta_{i}} s_{\alpha_{i}} & a_{i} c_{\theta_{i}} \\
s_{\theta_{i}} & c_{\theta_{i}} c_{\alpha_{i}} & -c_{\theta_{i}} s_{\alpha_{i}} & a_{i} s_{\theta_{i}} \\
0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance $\left(x_{i-1}, x_{i}\right)$ along z_{i}
θ_{i} : angle $\left(x_{i-1}, x_{i}\right)$ about z_{i}

SCARA

Link	a_{i}	α_{i}	d_{i}	Θ_{i}
$\mathbf{1}$	a_{1}	o	o	Θ_{1}
2	a_{2}	$18 o$	o	Θ_{2}
3	o	o	d_{3}	o
4	o	o	a_{4}	Θ_{4}

a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance (x_{i-1}, x_{i}) along z_{i}
θ_{i} : angle $\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right)$ about z_{i}

