MTR08114 Robotics Kinematics Yasser F. O. Mohammad

REMINER 1: Rotation

Representation

- **1**. Direction Cosines
- 2. Eular Angle
- 3. Roll-Pitch-Yaw
- 4. Axis/Angle

 Any 3D object possesses only 3 rotational degrees of freedom

REMINDER 2: Rigid Transformation 2 В $p^0 = R_1^0 p^1 + d_1^0$ {A} APBORG $= R_1^0 p^1 + d_1^0$ $^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG}$ $= R_2^1 p^2 + d_2^1$ $p^0 = R_1^0 R_2^1 p^2 + R_1^0 d_2^1 + d_1^0$ $\begin{array}{rcl} R_2^0 &=& R_1^0 R_2^1 \\ d_2^0 &=& d_1^0 + R_1^0 d_2^1 \end{array}$ $= R_2^0 p^2 + d_2^0$

REMINDER 3: Inverse Homogeneous

REMINDER 4: Composition Rules

Around current axis

$H_2^0 = H_1^0 H$

Around fixed axis

 $H_{2}^{0} = HH_{1}^{0}$

Manipulator/ Kinematic Chain

Joint Variables

$q_i = \begin{cases} d_i & prismatic \\ \theta_i & revolute \end{cases}$

Steps of Kinematic Analysis

- **1.** Attach frame $i < o_i x_i y_i z_i >$ to link i.
 - Coordinates of points in link *i* in frame *i* are constant
- 2. Find the transformation from each frame to the next
 - Origin of frame *i* in frame *i*-1

•
$$A_j = T_j^{j-1} = A_j(q_j)$$

3. Find the end effector origin in the base frame

•
$$T_n^0 = T_1^0 T_2^1 \dots T_{n-1}^{n-2} T_n^{n-2}$$

$$T_j^i = A_{i+1} \cdots A_j = \begin{bmatrix} R_j^i & o_j^i \\ 0 & 1 \end{bmatrix}$$
$$R_j^i = R_{i+1}^i \cdots R_j^{j-1}$$
$$o_j^i = o_{j-1}^i + R_{j-1}^i o_j^{j-1}$$

Link Description

Intersecting axes • What is the common normal????? tch Roll • Normal to the plane containing both axes Which direction Direction of end aw effector What is the twist • Angle in this plane

Joint parameters

Denavit-Hartenberg Parameters

Constants by design

- Link twist α_i
- Link length a_i
- Joint parameters
 - Link Offset
 - Joint Angle

 d_i θ_i (variable in prismatic) (variable in revolute)

• All frame transformations are functions in these four parameters

The four six dilemma

- Homogeneous transformation needs 6 parameters
- DH parameters are 4
- Yet DH parameters are enough!!!!
- HOW?
- We have two assumptions:
 X_i is perpendicular to Z_{i-1}
 - X_i is perpendicular to 2
 - X_i intersects Z_{i-1}

DH (All together)

DH parameters summary

Frame transformation from DH

$$\begin{split} A_{i} &= Rot_{z,\theta_{i}} \mathrm{Trans}_{z,d_{i}} \mathrm{Trans}_{x,a_{i}} Rot_{x,\alpha_{i}} \\ &= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &\times \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{split}$$

Notes about placement

- Z_i and Z_{i-1} are not coplanar
 - Unique common perpendicular (unique a_{i-1} and α_{i-1}).
- Z_i and Z_{i-1} are parallel
 - Infinite number of possible perpendicular. We put the origin as we like to simplify the equations $(\alpha_i = 0)$.
- Z_i and Z_{i-1} are intersecting
 - X_i is chosen normal to the common plane in the direction of end effector (a_i =0)

First and Last Frames

- Frames 1 to n correspond to the n joints
- Frame o corresponds to the base (no need to be on the base!!)
- Frame n+1 corresponds to end effector (no need to be on it!!)
- Rule: maximize zeros to simplify forward kinematics
- How?
 - Put frame o's origin, X, and Z in the same location as frame 1 when its variable is zero
 - Put frame n+1's origin, X, and Z in the same location as frame n when its variable is zero

First and Last Link's a & α

First & Last Link's d and Θ

Placement of Base Frame

End Effector's frame

Placement of End Effector

- If specified use the specified frame
- If not specified:
 - Put the origin with the origin of frame n
 - Align Z and X with frame n's Z and X when joint variable n is zero

Placement of Last Frame Summary

Example RRR

Link	a _i	α_i	d _i	$\boldsymbol{\varTheta}_i$
Ο	Ο	Ο	-	-
1	L_{i}	0	0	$\Theta_{_{I}}$
2	L_2	Ο	0	$\Theta_{_2}$
3	0	0	0	$\Theta_{_3}$

y₁

$$A_{i} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 1. Place Zs
- 2. Place Xs
- 3. Place Origins

 Z_4 Z_3 \mathbf{Z}_{2} y_o X_o $\mathbf{Z}_{\mathbf{0}}\mathbf{Z}_{1}$ **a**_i : distance (**z**_i, **z**_{i+1}) along **x**_i α_i : angle (z_i, z_{i+1}) about x_i d_i : distance (x_{i-1}, x_i) along z_i θ_i : angle (x_{i-1} , x_i) about z_i

Planar Elbow

Link	a _i	α_i	d _i	Θ_i
0	0	0	-	-
1	a_{i}	0	0	Θ
2	<i>a</i> ₂	Ο	Ο	Θ
$A_1 =$	$\begin{bmatrix} c_1 & -s \\ s_1 & c_1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$egin{array}{cccc} 1 & 0 & a_1c \ 0 & a_1s \ 1 & 0 \ 0 & 1 \end{array}$		
$A_2 =$	$\begin{bmatrix} c_2 & -s \\ s_2 & c_2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$egin{array}{cccc} 2 & 0 & a_2c \ 0 & a_2s \ 1 & 0 \ 0 & 1 \end{array}$	2 2	

 $T_1^0 = A_1$ $T_2^0 = A_1A_2 = \begin{bmatrix} c_{12} & -s_{12} & 0 & a_1c_1 + a_2c_{12} \\ s_{12} & c_{12} & 0 & a_1s_1 + a_2s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

3-Link Cylindrical M.

Link	a _i	α_i	d _i	$\boldsymbol{\varTheta}_i$	
1	Ο	0	a_1	$\Theta_{_{I}}$	
2	0	-90	d_{2}	Ο	
3	0	Ο	d_3	0	
$A_1 =$	$\begin{bmatrix} c_1 & -s_1 \\ s_1 & c_1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} A_2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$	0 1 0 0
$T_{3}^{0} =$	$A_1A_2A_3$	$= \begin{bmatrix} c_1 \\ s_1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{ccc} 0 & -s \\ 0 & c_1 \\ -1 & 0 \\ 0 & 0 \end{array}$	$c_{1} - s_{1}d_{3}$ $c_{1}d_{3}$ $d_{1} + d_{2}$ 1	

 $0 \\ 0 \\ d_2$

1

Spherical Wrist

Link		a _i	α_i	d _i	$\boldsymbol{\Theta}_i$
4		Ο	-90	Ο	$\Theta_{_4}$
5		0	90	0	$\Theta_{_{5}}$
6		Ο	0	<i>a</i> ₆	Θ_6
$A_4 =$		$egin{array}{cccc} c_4 & 0 & -s_4 \ s_4 & 0 & c_4 \ 0 & -1 & 0 \ 0 & 0 & 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} A_5 =$	$\begin{bmatrix} c_5 & 0\\ s_5 & 0\\ 0 & -1\\ 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} s_5 & 0 \\ -c_5 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} $
$A_{6} =$		$egin{array}{cccc} c_6 & -s_6 & 0 \ s_6 & c_6 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ d_6 \\ 1 \end{bmatrix}$		
$T_{6}^{3} =$	A_4	A_5A_6			
=	[]	$\left[egin{smallmatrix} R_6^3 & o_6^3 \ 0 & 1 \end{smallmatrix} ight]$			
=		$c_4c_5c_6 - s_4s_6s_4c_5c_6 + c_4s_6-s_5c_60$	$-c_4c_5s_6s_4c_5s_6 + s_5s_6 - 0$	$egin{array}{cccc} s_4c_6 & c_4s_5 \ c_4c_6 & s_4s_5 \ & c_5 \ & 0 \end{array}$	$\begin{array}{c} c_4 s_5 d_6 \\ s_4 s_5 d_6 \\ c_5 d_6 \\ 1 \end{array}$

Cylindrical Manipulator with Spherical Wrist

Link	a _i	α,	d _i	$\boldsymbol{\varTheta}_i$
1	0	0	<i>a</i> ₁	$\Theta_{_{I}}$
2	0	-90	d_{2}	0
3	0	0	d_3	0
4	0	-90	0	$\Theta_{_4}$
5	0	90	0	Θ_{5}
6	0	0	<i>a</i> ₆	Θ_6

 $A_i = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_ic_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Stanford Arm

Link	a _i	α,	d _i	$\boldsymbol{\varTheta}_i$
1	0	-90	Ο	$\Theta_{_{I}}$
2	0	90	<i>a</i> ₂	$\Theta_{_2}$
3	0	0	d_3	0
4	0	-90	0	$\Theta_{_4}$
5	0	90	0	Θ_{5}
6	0	0	<i>a</i> ₆	Θ_6

$$A_i = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_i c_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_i s_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

SCARA

Link	a _i	α_i	d _i	$\boldsymbol{\varTheta}_i$
1	<i>a</i> ₁	Ο	Ο	$\Theta_{_{I}}$
2	<i>a</i> ₂	180	0	$\Theta_{_2}$
3	0	0	d_{3}	0
4	0	0	a ₄	$\Theta_{_4}$

$$A_i = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_ic_{\theta_i} \\ s_{\theta_i} & c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_is_{\theta_i} \\ 0 & s_{\alpha_i} & c_{\alpha_i} & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\begin{array}{l} \textbf{a}_{i}: \text{ distance } (\textbf{z}_{i}, \textbf{z}_{i+1}) \text{ along } \textbf{x}_{i} \\ \textbf{\alpha}_{i}: \text{ angle } (\textbf{z}_{i}, \textbf{z}_{i+1}) \text{ about } \textbf{x}_{i} \\ \textbf{d}_{i}: \text{ distance } (\textbf{x}_{i-1}, \textbf{x}_{i}) \text{ along } \textbf{z}_{i} \\ \textbf{\theta}_{i}: \text{ angle } (\textbf{x}_{i-1}, \textbf{x}_{i}) \text{ about } \textbf{z}_{i} \end{array}$