MTR08114 Robotics Inverse Kinematics Yasser F. O. Mohammad

REMINDER 1: Manipulator/ Kinematic Chain

REMINDER 2: Steps of Kinematic Analysis

- **1.** Attach frame $i < o_i x_i y_i z_i >$ to link i.
 - Coordinates of points in link *i* in frame *i* are constant
- 2. Find the transformation from each frame to the next
 - Origin of frame *i* in frame *i*-1

•
$$A_j = T_j^{j-1} = A_j(q_j)$$

3. Find the end effector origin in the base frame

•
$$T_n^0 = T_1^0 T_2^1 \dots T_{n-1}^{n-2} T_n^{n-2}$$

$$T_j^i = A_{i+1} \cdots A_j = \begin{bmatrix} R_j^i & o_j^i \\ 0 & 1 \end{bmatrix}$$
$$R_j^i = R_{i+1}^i \cdots R_j^{j-1}$$
$$o_j^i = o_{j-1}^i + R_{j-1}^i o_j^{j-1}$$

REMINDER 3: Denavit-Hartenberg

Parameters

- Constants by design
 - Link twist α_i
 - Link length a_i
- Joint parameters
 - Link Offset
 - Joint Angle

 d_i θ_i (variable in prismatic) (variable in revolute)

• All frame transformations are functions in these four parameters

REMINDER 4: Cylindrical Manipulator with Spherical Wrist

Link	a _i	α,	d _i	$\boldsymbol{\varTheta}_i$	$\xrightarrow{d_3}$	Θ_5
1	Ο	0	<i>a</i> ₁	$\Theta_{_{I}}$		
2	0	-90	d_{2}	0	σ_4	$\sigma_6 n \neq s$
3	0	0	d_3	0	d_2	
4	0	-90	0	$\Theta_{_4}$		
5	0	90	0	Θ_{5}	Θ_1	
6	0	0	<i>a</i> ₆	Θ_6	$A_{i} = S_{\theta_{i}}$	$\begin{array}{cccc} -s_{\theta_i}c_{\alpha_i} & s_{\theta_i}s_{\alpha_i} & a_i c_{\theta_i} \\ c_{\theta_i}c_{\alpha_i} & -c_{\theta_i}s_{\alpha_i} & a_i s_{\theta_i} \end{array}$
					$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{ccc} s_{lpha_i} & c_{lpha_i} & d_i \ 0 & 0 & 1 \end{array}$

a_i: distance (z_i, z_{i+1}) along x_i α_i : angle (z_i, z_{i+1}) about x_i **d**_i: distance (x_{i+1}, x_i) along z_i θ_i : angle (x_{i+1}, x_i) about z_i

٨

General Inverse Kinematics Problem

Given

$$H = \begin{bmatrix} R & o \\ 0 & 1 \end{bmatrix} \in SE(3)$$

Find $q_{l}, q_{2}, \dots, q_{n}$ so that $T_{n}^{0}(q_{1}, \dots, q_{n}) = H$

$$T_n^0(q_1,\ldots,q_n) = A_1(q_1)\cdots A_n(q_n)$$

How to solve it?

• 12 equations in *n* variables

 $T_{ij}(q_1,\ldots,q_n) = h_{ij}, \qquad i = 1, 2, 3, \quad j = 1, \ldots, 4$

• Why 12?!

Example (Stanford Arm) $H = \begin{bmatrix} 0 & 1 & 0 & -0.154 \\ 0 & 0 & 1 & 0.763 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

 $\theta_1 = \pi/2$ $\theta_2 = \pi/2$ $d_3 = 0.5$ $\theta_4 = \pi/2$ $\theta_5 = 0$ $\theta_6 = \pi/2$

$$s_1(c_2c_4s_5 + s_2c_5) + c_1s_4s_5 =$$

 $c_1(c_2c_4s_5 + s_2c_5) - s_1s_4s_5 = 0$

 $s_2(c_4c_5s_6 + s_4c_6) + c_2s_5s_6 =$

 $-s_2(c_4c_5c_6 - s_4s_6) - c_2s_5c_6 =$

$$-s_2c_4s_5 + c_2c_5 = 0$$

= - 0

= 0

1

1 =

0 =

- 0

1

$$c_1 s_2 d_3 - s_1 d_2 + d_6 (c_1 c_2 c_4 s_5 + c_1 c_5 s_2 - s_1 s_4 s_5) = -0.154$$

 $c_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] - s_1(s_4c_5c_6 + c_4s_6)$

 $s_1[c_2(c_4c_5c_6 - s_4s_6) - s_2s_5c_6] + c_1(s_4c_5c_6 + c_4s_6)$

 $c_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] - s_1(-s_4c_5s_6 + c_4c_6)$

 $s_1[-c_2(c_4c_5s_6 + s_4c_6) + s_2s_5s_6] + c_1(-s_4c_5s_6 + c_4c_6)$

$$s_1 s_2 d_3 + c_1 d_2 + d_6 (c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2) = 0.763$$

$$c_2d_3 + d_6(c_2c_5 - c_4s_2s_5) = 0$$

Why Closed Form Solution

- **1**. Fast to compute (after we discover it)
- 2. Finding all solutions

We find the mathematical solution then apply engineering limitations.

How to find a closed form solution

- Kinematic Decoupling
 - Inverse Position Kinematics
 - Find the parameters controlling the position
 - Inverse Orientation Kinematics
 - Find the parameters controlling the orientation

This limits possible arm designs

Most common case

• Six joints

• Last three are a wrist (intersecting at some point o_c)

$$R_6^0(q_1, \dots, q_6) = R$$

 $o_6^0(q_1, \dots, q_6) = o$

Position of Rest Center

• The end effector is just a translation away from o_c

This gives the first three parameters

Orientation From Wrist to Gripper

This gives the last three parameters

General Inverse Kinematic

Approach (as we use it)

- 1. Using desired rotation and displacement of end effector:
 - Find the location of the wrist center
- 2. Using location of wrist center
 - Find first three parameters (geometrical approach)
 - This is the solution of the inverse position problem
- 3. Using the desired rotation and
 - Find last three parameters (Eular Angles)
 - This is the solution of the inverse orientation problem

Position of Rest Center

• The end effector is just a translation away from o_c

This gives the first three parameters

General Inverse Kinematic Approach (as we use it)

- 1. Using desired rotation and displacement of end effector:
 - Find the location of the wrist center
- 2. Using location of wrist center
 - Find first three parameters (geometrical approach)
 - This is the solution of the inverse position problem
- 3. Using the desired rotation and loc. of wrist center
 - Find last three parameters (Eular Angles)
 - This is the solution of the inverse orientation problem

Inverse Position (Geometric)

- Given o_c^0
 - Find q_1, q_2, q_3
- Steps to find q_i :
 - 1. Project the manipulator onto x_{i-1} - y_{i-1} plane
 - 2. Solve a simple trigonometry problem
- Why geometric approach?
 - Simple
 - Applies to MOST manipulators

Inverse Position Example 1

• Elbow Manipulator (e.g. PUMA)

• Avoiding Singularity in q₁

 $\theta_{1} = \alpha + \beta$ $\alpha = \arctan 2(x_{c}, y_{c})$ $\beta = \gamma + \pi$ $\gamma = \arctan 2(\sqrt{r^{2} - d^{2}}, d)$

• q_2, q_3

1. Projection onto link₂-link₃ plan

$$\begin{aligned} \cos \theta_3 &= \frac{r^2 + s^2 - a_2^2 - a_3^2}{2a_2 a_3} \\ &= \frac{x_c^2 + y_c^2 - d^2 + (z_c - d_1)^2 - a_2^2 - a_3^2}{2a_2 a_3} := D \\ &= \operatorname{atan2}\left(D, \pm \sqrt{1 - D^2}\right) \\ \theta_2 &= \operatorname{atan2}(r, s) - \operatorname{atan2}(a_2 + a_3 c_3, a_3 s_3) \\ &= \operatorname{atan2}\left(\sqrt{x_c^2 + y_c^2 - d^2}, z_c - d_1\right) - \operatorname{atan2}(a_2 + a_3 c_3, a_3 s_3) \end{aligned}$$

The four solutions

RIGHT and ABOVE Arm

RIGHT and BELOW Arm

Inverse Position – Example 2

Spherical Manipulator

Inverse Position – Spherical Cont.

or

General Inverse Kinematic Approach (as we use it)

- Using desired rotation and displacement of end effector:
 - Find the location of the wrist center
- 2. Using location of wrist center
 - Find first three parameters (geometrical approach)
 - This is the solution of the inverse position problem
- 3. Using the desired rotation and loc.of wrist center
 - Find last three parameters (Eular Angles)
 - This is the solution of the inverse orientation problem

Inverse Orientation

Using the desired rotation and loc.of wrist center **Find last three parameters**

Can be interpreted as finding Eular Angles

From R to Eular Angles

- Given R
 - Find Φ,Θ,Ψ

$$\begin{array}{cccc} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta} \\ & -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{array}$$

• If r_{13} and r_{23} are not both zero • $s_{\Theta} \neq 0$, r_{31} and r_{32} are not both zero, $r_{33} \neq \pm 1$, $c_{\Theta} = r_{33}$, $s_{\Theta} = \pm \sqrt{1 - r_{33}}$

$$\theta = \operatorname{atan2}\left(r_{33}, \sqrt{1 - r_{33}^2}\right) \quad \theta = \operatorname{atan2}\left(r_{33}, -\sqrt{1 - r_{33}^2}\right)$$

$$\phi = \operatorname{atan2}(r_{13}, r_{23}) \quad \phi = \operatorname{atan2}(-r_{13}, -r_{23})$$

$$\psi = \operatorname{atan2}(-r_{31}, r_{32}) \quad \psi = \operatorname{atan2}(r_{31}, -r_{32})$$

From R to Eular Angles 2

• Given R

- Find Φ,Θ,Ψ
- If r_{13} and r_{23} are both zeros

 $\begin{bmatrix} c_{\phi}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}s_{\psi} - s_{\phi}c_{\psi} & 0\\ s_{\phi}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}s_{\psi} + c_{\phi}c_{\psi} & 0\\ 0 & 0 & 1 \end{bmatrix}$

•
$$s_{\Theta}=0, r_{31}=r_{32}=0, r_{33}=\pm 1, c_{\Theta}=1, \Theta=0$$

 $= \begin{bmatrix} c_{\phi+\psi} & -s_{\phi+\psi} & 0\\ s_{\phi+\psi} & c_{\phi+\psi} & 0\\ 0 & 0 & 1 \end{bmatrix}$

 $= \operatorname{atan2}(r_{11}, -r_{12})$

 $\phi + \psi = \operatorname{atan2}(r_{11}, r_{21})$

(Two rotations around Z)

 $c_{\phi} s_{\theta}$

 $s_{\phi}s_{\theta}$

 $c_{ heta}$

$$\begin{bmatrix} -c_{\phi-\psi} & -s_{\phi-\psi} & 0\\ s_{\phi-\psi} & c_{\phi-\psi} & 0\\ 0 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & r_{12} & 0 \end{bmatrix}$$

 $\begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} \\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} \\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} \end{bmatrix}$

$$= \begin{vmatrix} r_{21} & r_{22} & 0 \\ 0 & 0 & -1 \end{vmatrix}$$

 $\phi - \psi = \operatorname{atan2}(-r_{11}, -r_{12})$

Elbow Manipulator – Full Solution

