MTR08114 Robotics Inverse Kinematics Yasser F. O. Mohammad

REMINDER 1: Manipulator/

 Kinematic Chain

REMINDER 2: Steps of Kinematic

Analysis

1. Attach frame $i<o_{i} x_{i} y_{i} z_{i}>$ to link i.

- Coordinates of points in link i in frame i are constant

2. Find the transformation from each frame to the next

- Origin of frame i in frame $i-1$
- $A_{j}=T_{j}^{j-1}=A_{j}\left(q_{j}\right)$

3. Find the end effector origin in the base frame

- $T_{n}^{0}=T_{1}^{0} T_{2}^{1} \ldots \ldots . T_{n-1}^{n-2} T_{n}^{n-1}$

$$
\begin{aligned}
T_{j}^{i} & =A_{i+1} \cdots A_{j}=\left[\begin{array}{cc}
R_{j}^{i} & o_{j}^{i} \\
0 & 1
\end{array}\right] \\
R_{j}^{i} & =R_{i+1}^{i} \cdots R_{i}^{j-1} \\
o_{j}^{i} & =o_{j-1}^{i}+R_{j-1}^{i} o_{j}^{j-1}
\end{aligned}
$$

REMINDER 3: Denavit-Hartenberg

Parameters

- Constants by design
- Link twist α_{i}
- Link length a_{i}
- Joint parameters
- Link Offset
- Joint Angle
(variable in prismatic)
(variable in revolute)
- All frame transformations are functions in these four parameters

REMINDER 4: Cylindrical

Manipulator with Spherical Wrist

Link	a_{i}	α_{i}	d_{i}	Θ_{i}
1	o	o	a_{1}	Θ_{1}
2	o	-90	d_{2}	o
3	o	o	d_{3}	o
4	o	-90	o	Θ_{4}
5	o	90	o	Θ_{5}
6	o	o	a_{6}	Θ_{6}

a_{i} : distance $\left(z_{i}, z_{i+1}\right)$ along x_{i}
α_{i} : angle $\left(z_{i}, z_{i+1}\right)$ about x_{i}
d_{i} : distance $\left(x_{i-1}, x_{i}\right)$ along z_{i}
θ_{i} : angle $\left(\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right)$ about z_{i}

General Inverse Kinematics Problem

Given

$$
H=\left[\begin{array}{cc}
R & o \\
0 & 1
\end{array}\right] \in S E(3)
$$

Find so that

$$
\begin{aligned}
& q_{1}, q_{2}, \ldots \ldots, q_{n} \\
& T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=H
\end{aligned}
$$

$$
T_{n}^{0}\left(q_{1}, \ldots, q_{n}\right)=A_{1}\left(q_{1}\right) \cdots A_{n}\left(q_{n}\right)
$$

How to solve it?

- 12 equations in n variables

$$
T_{i j}\left(q_{1}, \ldots, q_{n}\right)=h_{i j}, \quad i=1,2,3, \quad j=1, \ldots, 4
$$

- Why 12?!

Example (Stanford Arm)

$$
H=\left[\begin{array}{cccc}
0 & 1 & 0 & -0.154 \\
0 & 0 & 1 & 0.763 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{array}{rlrl}
c_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]-s_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) & =0 & \\
s_{1}\left[c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right]+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) & =0 & \theta_{1}=\pi / 2 \\
-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} c_{6} & =1 & \\
c_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]-s_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) & =1 & \theta_{2}=\pi / 2 \\
s_{1}\left[-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right]+c_{1}\left(-s_{4} c_{5} s_{6}+c_{4} c_{6}\right) & =0 & d & d_{3}=0.5 \\
s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6} & =0 \\
c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} & =0 & \theta_{4}=\pi / 2 \\
s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} & =1 & \theta_{5}=0 \\
-s_{2} c_{4} s_{5}+c_{2} c_{5} & =0 & \theta_{6}=\pi / 2
\end{array}
$$

$$
c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right)=0
$$

Why Closed Form Solution

1. Fast to compute (after we discover it)
2. Finding all solutions

We find the mathematical solution then apply engineering limitations.

How to find a closed form solution

- Kinematic Decoupling
- Inverse Position Kinematics
- Find the parameters controlling the position
- Inverse Orientation Kinematics
- Find the parameters controlling the orientation

This limits possible arm designs

Most common case

- Six joints

- Last three are a wrist (intersecting at some point o_{c})

$$
\begin{aligned}
R_{6}^{0}\left(q_{1}, \ldots, q_{6}\right) & =R \\
o_{6}^{0}\left(q_{1}, \ldots, q_{6}\right) & =o
\end{aligned}
$$

Position of Rest Center

- The end effector is just a translation away from o_{c}

Link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}^{*}
5	0	90	0	θ_{5}^{*}
6	0	0	d_{6}	θ_{6}^{*}

$$
\begin{aligned}
o & =o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right] } & =\left[\begin{array}{l}
o_{c}^{0}=o-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
\end{aligned}
$$

Orientation From Wrist to Gripper

$$
R_{6}^{3}=\left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{T} R
$$

General Inverse Kinematic

 Approach (as we use it)1. Using desired rotation and displacement of end effector:

- Find the location of the wrist center

2. Using location of wrist center

- Find first three parameters (geometrical approach)
- This is the solution of the inverse position problem

3. Using the desired rotation and

- Find last three parameters (Eular Angles)
- This is the solution of the inverse orientation problem

Position of Rest Center

- The end effector is just a translation away from o_{c}

Link	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	-90	0	θ_{4}^{*}
5	0	90	0	θ_{5}^{*}
6	0	0	d_{6}	θ_{6}^{*}

$$
\begin{aligned}
o & =o_{c}^{0}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right] } & =\left[\begin{array}{l}
o_{c}^{0}=o-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
\end{aligned}
$$

General Inverse Kinematic

 Approach (as we use it)1.-Using desired rotation and displacement of end effector:

- Find the location of the wrist center

2. Using location of wrist center

- Find first three parameters (geometrical approach)
- This is the solution of the inverse position problem

3. Using the desired rotation and loc. of wrist center

- Find last three parameters (Eular Angles)
- This is the solution of the inverse orientation problem

Inverse Position (Geometric)

- Given o_{c}^{0}
- Find $q_{1} q_{2}, q_{3}$
- Steps to find q_{i} :

1. Project the manipulator onto $\mathrm{x}_{\mathrm{i}-1}-\mathrm{y}_{\mathrm{i}-\mathrm{l}}$ plane
2. Solve a simple trigonometry problem

- Why geometric approach?
- Simple
- Applies to MOST manipulators

Inverse Position Example 1

- Elbow Manipulator (e.g. PUMA)

Inverse Position - Elbow Cont.

- q_{1}

1. Projection onto $\mathrm{x}_{\mathrm{o}}-\mathrm{y}_{\mathrm{o}}$

2. Solve for Θ_{1}
$\theta_{1}=\arctan 2\left(x_{c}, y_{c}\right)$
or
$\theta_{1}=\pi+\arctan 2\left(x_{c}, y_{c}\right)$

Singular Position

$$
x_{c}=y_{c}=0!!!!
$$

Inverse Position - Elbow Cont.

- Avoiding Singularity in q_{1}

2. Solve for Θ_{1}
$\theta_{1}=\varphi-\alpha$
$\alpha=\arctan 2\left(\sqrt{r^{2}-d^{2}}, d\right)$
$\varphi=\arctan 2\left(\sqrt{x^{2}+y^{2}-d^{2}}, d\right)$

Inverse Position - Elbow Cont.

- $\mathrm{q}_{2}, \mathrm{q}_{3}$

1. Projection onto link ${ }_{2}$-link ${ }_{3}$ plan
2. Solve for Θ_{1}

$$
\begin{aligned}
\cos \theta_{3} & =\frac{r^{2}+s^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}} \\
& =\frac{x_{c}^{2}+y_{c}^{2}-d^{2}+\left(z_{c}-d_{1}\right)^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}}:=D \\
& =\operatorname{atan} 2\left(D, \pm \sqrt{1-D^{2}}\right) \\
\theta_{2} & =\operatorname{atan} 2(r, s)-\operatorname{atan} 2\left(a_{2}+a_{3} c_{3}, a_{3} s_{3}\right) \\
& =\operatorname{atan} 2\left(\sqrt{x_{c}^{2}+y_{c}^{2}-d^{2}}, z_{c}-d_{1}\right)-\operatorname{atan} 2\left(a_{2}+a_{3} c_{3}, a_{3} s_{3}\right)
\end{aligned}
$$

Inverse Position - Elbow Cont.

- The four solutions

LEFT and ABOVE Arm

LEFT and BELOW Arm

RIGHT and ABOVE Arm

RIGHT and BELOW Arm

Inverse Position - Example 2

- Spherical Manipulator

Inverse Position - Spherical Cont.

$$
\begin{aligned}
& \theta_{1}=\operatorname{atan} 2\left(x_{c}, y_{c}\right) \\
& \text { or } \\
& \theta_{1}=\pi+\operatorname{atan} 2\left(x_{c}, y_{c}\right) \\
& \theta_{2}= \operatorname{atan} 2(r, s)+\frac{\pi}{2} \\
& d_{3}=\sqrt{r^{2}+s^{2}}=\sqrt{x_{c}^{2}+y_{c}^{2}+\left(z_{c}-d_{1}\right)^{2}}
\end{aligned}
$$

General Inverse Kinematic

 Approach (as we use it)1.-Using desired rotation and displacement of end effector:
-Find the location of the wrist center
2. Using location of wrist center

- Find first three parameters (geometrical approach)
-This is the solution of the inverse position problem

3. Using the desired rotation and loc.of wrist center

- Find last three parameters (Eular Angles)
- This is the solution of the inverse orientation problem

Inverse Orientation

Using the desired rotation and loc.of wrist center Find last three parameters

Can be interpreted as finding Eular Angles

$$
\begin{aligned}
\theta_{4} & =\phi \\
\theta_{5} & =\theta \\
\theta_{6} & =\psi
\end{aligned}
$$

Eular Angles

- Φ, Θ, Ψ
- $R_{Z Y Z}$

(1)

(2)

(3)

From R to Eular Angles

- Given R
- Find Φ, Θ, Ψ
$\left[\begin{array}{ccc}c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\ s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\ -s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}\end{array}\right]$
- If r_{13} and r_{23} are not both zero
- $s_{\Theta} \neq 0, r_{31}$ and r_{32} are not both zero, $r_{33} \neq \pm 1, c_{\Theta}=r_{33}, s_{\Theta}= \pm \sqrt{1-r_{33}}$
$\theta=\operatorname{atan} 2\left(r_{33}, \sqrt{1-r_{33}^{2}}\right) \quad \theta=\operatorname{atan} 2\left(r_{33},-\sqrt{1-r_{33}^{2}}\right)$
$\phi=\operatorname{atan} 2\left(r_{13}, r_{23}\right)$
$\psi=\operatorname{atan} 2\left(-r_{31}, r_{32}\right)$
$\phi=\operatorname{atan} 2\left(-r_{13},-r_{23}\right)$
$\psi=\operatorname{atan} 2\left(r_{31},-r_{32}\right)$

From R to Eular Angles 2

- Given R
- Find Φ, Θ, Ψ

$$
\left[\begin{array}{ccc}
c_{\phi} c_{\theta} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} c_{\theta} s_{\psi}-s_{\phi} c_{\psi} & c_{\phi} s_{\theta} \\
s_{\phi} c_{\theta} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} c_{\theta} s_{\psi}+c_{\phi} c_{\psi} & s_{\phi} s_{\theta} \\
-s_{\theta} c_{\psi} & s_{\theta} s_{\psi} & c_{\theta}
\end{array}\right]
$$

- If r_{13} and r_{23} are both zeros
- $s_{\Theta}=0, r_{31}=r_{32}=0, r_{33}= \pm 1, c_{\Theta}=1, \Theta=0 \quad$ (Two rotations around Z)

$$
\begin{array}{rcc}
{\left[\begin{array}{ccc}
c_{\phi} c_{\psi}-s_{\phi} s_{\psi} & -c_{\phi} s_{\psi}-s_{\phi} c_{\psi} & 0 \\
s_{\phi} c_{\psi}+c_{\phi} s_{\psi} & -s_{\phi} s_{\psi}+c_{\phi} c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right]} & {\left[\begin{array}{rrr}
-c_{\phi-\psi} & -s_{\phi-\psi} & 0 \\
s_{\phi-\psi} & c_{\phi-\psi} & 0 \\
0 & 0 & -1
\end{array}\right]} \\
=\left[\begin{array}{ccc}
c_{\phi+\psi} & -s_{\phi+\psi} & 0 \\
s_{\phi+\psi} & c_{\phi+\psi} & 0 \\
0 & 0 & 1
\end{array}\right] & =\left[\begin{array}{rrr}
r_{11} & r_{12} & 0 \\
r_{21} & r_{22} & 0 \\
0 & 0 & -1
\end{array}\right] \\
\phi+\psi & =\operatorname{atan} 2\left(r_{11}, r_{21}\right) \\
=\operatorname{atan} 2\left(r_{11},-r_{12}\right) & \phi-\psi=\operatorname{atan2(-r_{11},-r_{12})}
\end{array}
$$

Elbow Manipulator - Full Solution

Given

$$
o=\left[\begin{array}{c}
o_{x} \\
o_{y} \\
o_{z}
\end{array}\right]
$$

$$
\begin{aligned}
x_{c} & =o_{x}-d_{6} r_{13} \\
y_{c} & =o_{y}-d_{6} r_{23} \\
z_{c} & =o_{z}-d_{6} r_{33}
\end{aligned}
$$

$$
\begin{aligned}
\theta_{1}= & \operatorname{atan} 2\left(x_{c}, y_{c}\right) \\
\theta_{2}= & \operatorname{atan} 2\left(\sqrt{x_{c}^{2}+y_{c}^{2}-d^{2}}, z_{c}-d_{1}\right)-\operatorname{atan} 2\left(a_{2}+a_{3} c_{3}, a_{3} s_{3}\right) \\
\theta_{3}= & \operatorname{atan} 2\left(D, \pm \sqrt{1-D^{2}}\right) \\
& \text { where } D=\frac{x_{c}^{2}+y_{c}^{2}-d^{2}+\left(z_{c}-d_{1}\right)^{2}-a_{2}^{2}-a_{3}^{2}}{2 a_{2} a_{3}} \\
\theta_{4}= & \operatorname{atan} 2\left(c_{1} c_{23} r_{13}+s_{1} c_{23} r_{23}+s_{23} r_{33}\right. \\
& \left.-c_{1} s_{23} r_{13}-s_{1} s_{23} r_{23}+c_{23} r_{33}\right) \\
\theta_{5}= & \operatorname{atan} 2\left(s_{1} r_{13}-c_{1} r_{23}, \pm \sqrt{1-\left(s_{1} r_{13}-c_{1} r_{23}\right)^{2}}\right) \\
\theta_{6}= & \operatorname{atan} 2\left(-s_{1} r_{11}+c_{1} r_{21}, s_{1} r_{12}-c_{1} r_{22}\right)
\end{aligned}
$$

