MTR08114 Robotics Jacobian
 Yasser F. O. Mohammad

REMINDER 1: Velocity Kinematics

- Relation between end effector's linear and angular velocities and joint velocities.
- This is defined by the Jacobian (one of the most important concepts in robot motion)
- Steps:
- Understand velocity and its transfer with moving frames!!
- Derive Jacobian
- Understand singularities

REMIDNER 2: Angular Velocity:

FIXED AXIS

- Angular Velocity (describes a frame)

$$
\omega=\dot{\theta} k
$$

- Linear velocity (describes a point)

$$
v=\omega \times r
$$

- Angular velocity if fixed for the wh body
- Linear velocity depends on the distance between the point and the axis of rotation
- How to represent angular velocity?

REMINDER 3: Linear Velocity of a

 Point in a moving frame$v=\omega \times p$

- Translating And Rotating:

$$
\begin{aligned}
H_{1}^{0}(t) & =\left[\begin{array}{cc}
R_{1}^{0}(t) & o_{1}^{0}(t) \\
0 & 1
\end{array}\right] \\
p^{0} & =R p^{1}+o \\
\dot{p}^{0} & =\dot{R} p^{1}+\dot{o} \\
& =S(\omega) R p^{1}+\dot{o} \\
& =\omega \times r+v
\end{aligned}
$$

What are we after?

- Given $T_{n}^{0}(q)=\left[\begin{array}{cc}R_{n}^{0}(q) & o_{n}^{0}(q) \\ 0 & 1\end{array}\right]$
- Let $\quad S\left(\omega_{n}^{0}\right)=\dot{R}_{n}^{0}\left(R_{n}^{0}\right)^{T}$

$$
v_{n}^{0}=\dot{o}_{n}^{0} \quad \text { Jacobian }
$$

- Find $J=\left[\begin{array}{c}J_{v} \\ J_{\omega}\end{array}\right]$ where $\zeta_{\zeta}^{\zeta}=\left[\begin{array}{c}v_{n}^{0} \\ \omega_{n}^{0}\end{array}\right]=J \dot{q}=\left[\begin{array}{l}J_{v} \\ J_{\omega}\end{array}\right] \dot{q}$

The angular Jacobian J_{ω}

- Angular velocities are added as free vectors

$$
\omega_{2}^{0}=\omega_{0,1}^{0}+R_{1}^{0} \omega_{1,2}^{1}
$$

- We can find ω_{n} by adding all ω_{i} 's from the base to end effector
- Now $\omega=\dot{\theta} k$ where k is a unit vector in direction of rotation axis
- Using DH parameter's convention:

$$
\omega_{i}^{i-1}=\dot{\theta}_{i} z_{i-1}^{i-1}=\dot{\theta}_{i}\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}
$$

J_{ω} (Prismatic Joint) $\omega_{i}^{i-1}=\dot{\theta}_{i} z_{i-1}^{-1-1}=\dot{\theta}_{i}\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$

- Θ_{i} is constant

$$
\omega_{i}^{i-1}=0
$$

J_{ω} (Revolute Joint)

- Θ_{i} is variable

$$
\omega_{i}^{i-1}=\dot{\theta}_{i}\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}
$$

Angular Velocity of End Effector

- We know that:

$$
\omega_{0, n}^{0}=\omega_{0,1}^{0}+R_{1}^{0} \omega_{1,2}^{1}+R_{2}^{0} \omega_{2,3}^{2}+R_{3}^{0} \omega_{3,4}^{3}+\cdots+R_{n-1}^{0} \omega_{n-1, n}^{n-1}
$$

$$
=\omega_{0,1}^{0}+\omega_{1,2}^{0}+\omega_{2,3}^{0}+\omega_{3,4}^{0}+\cdots+\omega_{n-1, n}^{0}
$$

- If all joints are revolute: $\omega_{n}^{0}=\sum_{i=0}^{n} \dot{\theta}_{i} R_{i-1}^{0} z_{i-1}^{i-1}=\sum_{i=0}^{n} \dot{\theta}_{i} z_{i-1}^{0}$
- If all of the m are prismatic

$$
\omega_{n}^{0}=0
$$

- In general

$$
\omega_{n}^{0}=\sum_{i=0}^{n} \rho_{i} \dot{q}_{i} R_{i-1}^{0} z_{i-1}^{i-1}=\sum_{i=0}^{n} \rho_{i} \dot{q}_{i} z_{i-1}^{0}
$$

Now J ${ }_{\omega}$

$$
\begin{gathered}
\omega_{n}^{0}=\sum_{i=0}^{n} \rho_{i} \dot{q}_{i} R_{i}^{0} z_{i-1}^{i-1}=\sum_{i=0}^{n} \rho_{i} \dot{q}_{i} z_{i-1}^{0} \\
\omega_{n}^{0}=\sum_{i=0}^{n}\left(\rho_{i} z_{i-1}^{0}\right) \dot{q}_{i}=\sum_{i=0}^{n} J_{i=1} \dot{q}_{i}
\end{gathered}
$$

$$
J_{\omega}=\left[\rho_{i} z_{i-1}^{0}\right]_{i=1}^{n}
$$

Linear Velocity and Jacobian

- By chain Rule of Differentiation:

$$
\dot{o}_{n}^{0}=\sum_{i=1}^{n} \frac{\partial o_{n}^{0}}{\partial q_{i}} \frac{d q_{i}}{d t}=\sum_{i=1}^{n} \frac{\partial o_{n}^{0}}{\partial q_{i}} \dot{q}_{i}
$$

- By Jacobian definition $\quad \dot{o}_{n}^{0}=\sum_{i=1}^{n} J_{v i} \dot{q}_{i}$

$$
J_{v}=\left[\frac{\partial o_{n}^{0}}{\partial q_{i}}\right]_{i=1}^{n}
$$

What is the origin of frame n in 0

$$
\begin{aligned}
{\left[\begin{array}{cc}
R_{n}^{0} & o_{n}^{0} \\
0 & 1
\end{array}\right] } & =T_{n}^{0} \\
& =T_{i-1}^{0} T_{i}^{i-1} T_{n}^{i} \\
& =\left[\begin{array}{cc}
R_{i-1}^{0} & o_{i-1}^{0} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{i}^{i-1} & o_{i}^{i-1} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
R_{n}^{i} & o_{n}^{i} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
R_{n}^{0} & R_{i}^{0} o_{n}^{i}+R_{i-1}^{0} o_{i}^{i-1}+o_{i-1}^{0} \\
0 & 1
\end{array}\right] \\
& o_{n}^{0}=R_{i}^{0} o_{n}^{i}+R_{i-1}^{0} o_{i}^{i-1}+o_{i-1}^{0}
\end{aligned}
$$

Now Differentiate

$$
o_{n}^{0}=R_{i}^{0} o_{n}^{i}+R_{i-1}^{0} o_{i}^{i-1}+o_{i-1}^{0}
$$

$$
\dot{o}_{n}^{0}=\dot{R}_{i}^{0} o_{n}^{i}+R_{i}^{0} \dot{o}_{n}^{i}+\dot{R}_{i-1}^{0} o_{i}^{i-1}+R_{i-1}^{0} \dot{o}_{i}^{i-1}+\dot{o}_{i-1}^{0}
$$

- If ONLY Joint i is moving
$\dot{o}_{n}^{0}=\dot{R}_{i}^{0} o_{n}^{i}+0+\dot{R}_{i-1}^{0} o_{i}^{i-1}+R_{i-1}^{0} \dot{o}_{i}^{i-1}+0$

Prismatic Joint case

$\dot{o}_{n}^{0}=\dot{R}_{i}^{0} o_{n}^{i}+R_{i}^{0} \dot{o}_{n}^{i}+\dot{R}_{i-1}^{0} i_{i}^{i-1}+R_{i-1}^{0} \dot{o}_{i}^{i-1}+\dot{o}_{i-1}^{0}$

- If ONLY Joint i is moving
- $\dot{O}_{n}^{0}=\dot{R}_{i}^{0} o_{n}^{i}+0+\dot{R}_{i-1}^{0} o_{i}^{i-1}+R_{i-1}^{0} \dot{o}_{i}^{i-1}+0$
- R_{i-1}^{0} and R_{i}^{0} are constants

$$
\dot{o}_{n}^{0}=R_{i-1}^{0} \dot{o}_{i}^{i-1}
$$

Prismatic Joint

$$
\begin{aligned}
& \dot{o}_{n}^{0}=R_{i-1}^{0} \dot{o}_{i}^{i-1}=R_{i-1}^{0} \frac{\partial o_{i}^{i-1}}{\partial q_{i}} \dot{q}_{i} \\
& \dot{o}_{n}^{0}=\dot{q}_{i} R_{i-1}^{0} \frac{\partial\left[\begin{array}{lll}
a_{i} c_{i} & a_{i} s_{i} & d_{i}
\end{array}\right]^{T}}{\partial d_{i}}
\end{aligned}
$$

$$
\therefore \dot{o}_{n}^{0}=\dot{q}_{i} R_{i-1}^{0}\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
$$

$$
\dot{o}_{n}^{0}=\dot{q}_{i} z_{i-1}^{0}
$$

$$
J_{v i}=z_{i-1}^{0}
$$

Revolute Joint case

$\dot{o}_{n}^{0}=\dot{R}_{i}^{0} o_{n}^{i}+R_{i}^{0} \dot{o}_{n}^{i}+\dot{R}_{i-1}^{0} i_{i}^{i-1}+R_{i-1}^{0} \dot{o}_{i}^{i-1}+\dot{o}_{i-1}^{0}$

- If ONLY Joint i is moving
- $\dot{o}_{n}^{0}=\dot{R}_{i}^{0} o_{n}^{i}+0+\dot{R}_{i-1}^{0} o_{i}^{i-1}+R_{i-1}^{0} \dot{o}_{i}^{i-1}+0$
- R_{i-1}^{0} is constants

$$
\dot{o}_{n}^{0}=\dot{R}_{i}^{0} o_{n}^{i}+R_{i-1}^{0} \dot{o}_{i}^{i-1}
$$

Revolute Joint

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{i}} o_{n}^{0} & =\frac{\partial}{\partial \theta_{i}}\left[R_{i}^{0} o_{n}^{i}+R_{i-1}^{0} o_{i}^{i-1}\right] \\
& =\frac{\partial}{\partial \theta_{i}} R_{i}^{0} o_{n}^{i}+R_{i-1}^{0} \frac{\partial}{\partial \theta_{i}} o_{i}^{i-1} \\
& =\dot{\theta}_{i} S\left(z_{i-1}^{0}\right) R_{i}^{0} o_{n}^{i}+\dot{\theta}_{i} S\left(z_{i-1}^{0}\right) R_{i-1}^{0} o_{i}^{i-1} \\
& =\dot{\theta}_{i} S\left(z_{i-1}^{0}\right)\left[R_{i}^{0} o_{n}^{i}+R_{i-1}^{0} o_{i}^{i-1}\right] \\
& =\dot{\theta}_{i} S\left(z_{i-1}^{0}\right)\left(o_{n}^{0}-o_{i-1}^{0}\right) \\
& =\dot{\theta}_{i} z_{i-1}^{0} \times\left(o_{n}^{0}-o_{i-1}^{0}\right)
\end{aligned}
$$

More Details

$$
\begin{aligned}
R_{i-1}^{0} \frac{\partial}{\partial \theta_{i}}\left[\begin{array}{c}
a_{i} c_{i} \\
a_{i} s_{i} \\
d_{i}
\end{array}\right] & =R_{i-1}^{0}\left[\begin{array}{c}
-a_{i} s_{i} \\
a_{i} c_{i} \\
0
\end{array}\right] \dot{\theta}_{i} \\
& =R_{i-1}^{0} S\left(k \dot{\theta}_{i}\right) o_{i}^{i-1} \\
& =R_{i-1}^{0} S\left(k \dot{\theta}_{i}\right)\left(R_{i-1}^{0}\right)^{T} R_{i-1}^{0} o_{i}^{i-1} \\
& =S\left(R_{i-1}^{0} k \dot{\theta}_{i}\right) R_{i-1}^{0} o_{i}^{i-1} \\
& =\dot{\theta}_{i} S\left(z_{i-1}^{0}\right) R_{i-1}^{0} o_{i}^{i-1}
\end{aligned}
$$

So for Revolute Joint

$$
J_{v_{i}}=z_{i-1} \times\left(o_{n}-o_{i-1}\right)
$$

Putting It all Together

$$
\begin{gathered}
J_{v}=\left[J_{v_{1}} \cdots J_{v_{n}}\right] \\
J_{v_{i}}=\left\{\begin{array}{cl}
z_{i-1} \times\left(o_{n}-o_{i-1}\right) & \text { for revolute joint } i \\
z_{i-1} & \text { for prismatic joint } i
\end{array}\right. \\
J_{\omega}=\left[J_{\omega_{1}} \cdots J_{\omega_{n}}\right] \\
J_{\omega_{i}}=\left\{\begin{array}{cl}
z_{i-1} & \text { for revolute joint } i \\
0 & \text { for prismatic joint } i
\end{array}\right.
\end{gathered}
$$

The whole Jacobian (METHOD 1)

- Revolute Joint

$$
J_{i}=\left[\begin{array}{c}
z_{i-1} \times\left(o_{n}-o_{i-1}\right) \\
z_{i-1}
\end{array}\right]
$$

- Prismatic Joint

$$
J_{i}=\left[\begin{array}{c}
z_{i-1} \\
0
\end{array}\right]
$$

Where to get Them?

- Z from the third column of T
- O from the fourth column of T

$$
T_{i}^{0}=\left[\begin{array}{cccc}
x_{i}^{0} & y_{i}^{0} & \begin{array}{ccc}
z_{i}^{0} & o_{i}^{0} \\
0 & 0 & 0
\end{array} & 1
\end{array}\right]
$$

The whole Jacobian (METHOD 2)*

- Revolute Joint

$$
J_{i}=\left[\begin{array}{c}
\frac{\partial o_{n}}{\partial q_{i}} \\
z_{i-1}
\end{array}\right]
$$

- Prismatic Joint

$$
J_{i}=\left[\begin{array}{c}
z_{i-1} \\
0
\end{array}\right]
$$

Example 1 (Planar RR)

$$
\begin{gathered}
o_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad o_{1}=\left[\begin{array}{c}
a_{1} c_{1} \\
a_{1} s_{1} \\
0
\end{array}\right] \quad o_{2}=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
0
\end{array}\right] \\
z_{0}=z_{1}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad S(k)=\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
J(q)=\left[\begin{array}{cc}
z_{0} \times\left(o_{2}-o_{0}\right) & z_{1} \times\left(o_{2}-o_{1}\right) \\
z_{0} & z_{1}
\end{array}\right] \\
J=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
\end{gathered}
$$

Jacobian of Arbitrary Point

$$
J(q)=\left[\begin{array}{ccc}
z_{0} \times\left(o_{c}-o_{0}\right) & z_{1} \times\left(o_{c}-o_{1}\right) & u \\
z_{0} & z_{1} & 0
\end{array}\right\rfloor
$$

Link	a_{i}	α_{i}	d_{i}	θ_{i}
1	a_{1}	0	0	θ^{\star}
2	a_{2}	180	0	θ^{\star}
3	0	0	d^{\star}	0
4	0	0	d_{4}	θ^{\star}

Example 2: SCARA

$$
\begin{aligned}
A_{1} & =\left[\begin{array}{cccc}
c_{1} & -s_{1} & 0 & a_{1} c_{1} \\
s_{1} & c_{1} & 0 & a_{1} s_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{2} & =\left[\begin{array}{cccc}
c_{2} & s_{2} & 0 & a_{2} c_{2} \\
s_{2} & -c_{2} & 0 & a_{2} s_{2} \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{3} & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{4} & =\left[\begin{array}{cccc}
c_{4} & -s_{4} & 0 & 0 \\
s_{4} & c_{4} & 0 & 0 \\
0 & 0 & 1 & d_{4} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\square
$$

$$
\left[\begin{array}{ccc|}
c_{12} c_{4}+s_{12} s_{4} & -c_{12} s_{4}+s_{12} c_{4} & 0 \\
a_{1} c_{1}+a_{2} c_{12} \\
s_{12} c_{4}-c_{12} s_{4} & -s_{12} s_{4}-c_{12} c_{4} & 0 \\
a_{1} s_{1}+a_{2} s_{12} \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Bit of Terminology

Jacobian at End Effector

$$
\begin{aligned}
& \{e\}\}^{\omega_{e}} \quad\left\{\begin{array}{l}
v_{e}=v_{n}-P_{n e} \times \omega_{n} \\
\omega_{e}=\omega_{n}
\end{array}\right. \\
& \binom{v_{e}}{\omega_{e}}=\left(\begin{array}{c}
\mathrm{I}-\hat{P}_{n e} \\
\mathrm{O} \\
\mathrm{O}
\end{array}\right)\binom{v_{n}}{\omega_{n}} \\
& J_{e} \dot{q}=\left(\begin{array}{cc}
I & 1 \\
\hline & \hat{P}_{n} \\
\hline & I
\end{array}\right) J_{n} \dot{q} \\
& J_{e}=\left(\begin{array}{c}
\mathrm{I}-\hat{P_{n}} \\
\mathrm{O} \\
\mathrm{I}
\end{array}\right) J_{n}
\end{aligned}
$$

Jacobian in a different frame

$$
{ }^{i} J=\left(\begin{array}{cc}
{ }_{j}^{i} R & 0 \\
0 & { }_{j}^{i} R
\end{array}\right)^{j} J
$$

$$
\left|\operatorname{det} \quad{ }^{i} J\right|=\left|\operatorname{det} \quad{ }^{j} J\right|
$$

Cross Product in a different frame

$$
\begin{aligned}
& \begin{array}{l}
\left\{n \left\{\begin{array}{ll}
\omega_{n} & P_{n e} \\
\left.v_{n}\right\}
\end{array}{ }^{\omega_{e}} v_{e}{ }_{0} J_{e}=\left(\begin{array}{cc}
I & -{ }^{0} \hat{P}_{n e} \\
0 & I
\end{array}\right){ }^{0} J_{n}\right.\right. \\
{ }^{0} \hat{P} \neq{ }_{n}^{0} R{ }^{n} \hat{P} ; \quad \widehat{{ }^{0} P}=\left(\widehat{{ }_{n}^{0} R .{ }^{n} P}\right) \neq{ }_{n}^{0} R .{ }^{n} P
\end{array} \\
& { }^{0} P \times{ }^{0} \omega={ }_{n}^{0} R .\left({ }^{n} P \times{ }^{n} \omega\right) \\
& { }^{0} \hat{P} .{ }^{0} \omega={ }_{n}^{0} R .\left({ }^{n} \hat{P} .{ }^{n} \omega\right)={ }_{n}^{0} R \cdot\left({ }^{n} \hat{P} \cdot{ }_{n}^{0} R^{T} .{ }^{0} \omega\right)
\end{aligned}
$$

$$
{ }^{0} \hat{P}={ }_{n}^{0} R{ }^{n} \hat{P}{ }_{n}^{0} R^{T}
$$

From Osama Khatib

Jacobian of End effector in first

 frame$$
{ }^{0} J_{e}=\left(\begin{array}{cc}
{ }_{n}^{0} R & -{ }_{n}^{0} R^{n} \hat{P}_{\text {ene }}{ }_{n}^{0} R^{T} \\
0 & { }_{n}^{0} R
\end{array}\right){ }^{n} J_{n}
$$

Example

$$
\begin{gathered}
\text { Wrist Point } \\
x=l_{1} c_{1}+l_{2} c_{12} \\
y=l_{1} s_{1}+l_{2} s_{12}
\end{gathered} \begin{array}{r}
\text { End-Effector Point } \\
x=l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} \\
J_{W}=\left[\begin{array}{ccc}
-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} & 0 \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right] ; l_{1} s_{1}+l_{2} s_{12}+l_{3} s_{123}
\end{array}
$$

Example

Wrist Point

$$
\begin{aligned}
& x=l_{1} c_{1}+l_{2} c_{12} \\
& y=l_{1} s_{1}+l_{2} s_{12}
\end{aligned}
$$

End-Effector Point

$$
\begin{aligned}
& x=l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} \\
& y=l_{1} s_{1}+l_{2} s_{12}+l_{3} s_{123}
\end{aligned}
$$

$$
J_{W}=\left[\begin{array}{ccc}
-l_{1} s_{1}-l_{2} s_{12} & -l_{2} s_{12} & 0 \\
l_{1} c_{1}+l_{2} c_{12} & l_{2} c_{12} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]{ }^{0} J_{E}=\left[\begin{array}{ccc}
-l_{1} s_{1}-l_{2} s_{12}-l_{3} s_{123} & -l_{2} s_{12}-l_{3} s_{123} & -l_{3} s_{123} \\
l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} & l_{2} c_{12}+l_{3} c_{123} & l_{3} c_{123} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Example

Wrist Point

$$
\begin{aligned}
& x=l_{1} c_{1}+l_{2} c_{12} \\
& y=l_{1} s_{1}+l_{2} s_{12}
\end{aligned}
$$

End-Effector Point

$$
\begin{aligned}
& x=l_{1} c_{1}+l_{2} c_{12}+l_{3} c_{123} \\
& y=l_{1} s_{1}+l_{2} s_{12}+l_{3} s_{123}
\end{aligned}
$$

$$
{ }^{0} J_{E}=\left(\begin{array}{cc}
I & -{ }^{0} \hat{P}_{W E} \\
0 & I
\end{array}\right){ }^{0} J_{W}
$$

From Osama Khatib

Singularity

- Configurations in which the rank of the Jacobian is less than 6

1. Singularities represent configurations from which certain directions of motion may be unattainable.
2. At singularities, bounded end-effector velocities may correspond to unbounded joint velocities.
3. At singularities, bounded end-effector forces and torques may correspond to unbounded joint torques.
4. Near singularities there will not exist a unique solution to the inverse kinematics problem. In such cases there may be no solution or there may be infinitely many solutions.

How to find singularities?

1. Find the determinant of J and equalize it with zero
2. Find the QR decomposition of J and find the rank (does not give the singularity configuration)
3. For 6-DOF robots with wrist, find the determinant of the wrist alone and the arm alone. All singularities found are robot singularities.

Wrist Singularities

- Whenever z_{3} and z_{5} are aligned
- Prove it

Elbow Singularity

$$
J_{11}=\left[\begin{array}{ccc}
-a_{2} s_{1} c_{2}-a_{3} s_{1} c_{23} & -a_{2} s_{2} c_{1}-a_{3} s_{23} c_{1} & -a_{3} c_{1} s_{23} \\
a_{2} c_{1} c_{2}+a_{3} c_{1} c_{23} & -a_{2} s_{1} s_{2}-a_{3} s_{1} s_{23} & -a_{3} s_{1} s_{23} \\
0 & a_{2} c_{2}+a_{3} c_{23} & a_{3} c_{23}
\end{array}\right]
$$

Resolved Motion Rate Control (Whitney 1972)

$$
\delta x=J(\theta) \delta \theta
$$

Outside singularities

$$
\delta \theta=J^{-1}(\theta) \delta x
$$

Arm at Configuration θ

$$
\begin{aligned}
x & =f(\theta) \\
\delta x & =x_{d}-x \\
\delta \theta & =J^{-1} \delta x \\
\theta^{+} & =\theta+\delta \theta
\end{aligned}
$$

RMRC

From Osama Khatib

Jacobian Rank

- For RMRC to work J must be invertible
- J is $6 \times n$ and is invertible only if $n=6$ and full rank
- What can we do if $n>6$????????

How to calculate inverse Jacobian

$$
\begin{aligned}
& \zeta=J \dot{q} \\
& J^{T} \zeta=J^{T} J \dot{q} \\
& \left(J^{T} J\right)^{-1} J^{T} \zeta=\left(J^{T} J\right)^{-1} J^{T} J \dot{q} \\
& \left(J^{T} J\right)^{-1} J^{T} \zeta=\dot{q} \\
& \dot{q}=J^{+} \zeta \\
& J^{+}=\left(J^{T} J\right)^{-1} J^{T}
\end{aligned}
$$

How to calculate J+

- Most difficult method (from definition):

$$
J^{+}=\left(J^{T} J\right)^{-1} J^{T}
$$

- Simplest Method (SVD):

$$
\begin{aligned}
& J=U \sum V^{T} \quad \sigma_{v}^{+}=1 / \sigma_{\psi}, \quad \text { when } \sigma_{v} \neq 0 \\
& J^{+}=U^{T} \sum^{+} V
\end{aligned}
$$

Manipulability

$$
\mu=\prod_{i=1}^{m} \sigma_{i i}
$$

If the robot is not redundant ($\mathrm{n}<=6$)

$$
\mu=|\operatorname{det} J|
$$

Example (Planar RR)

$$
J=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12}
\end{array}\right]
$$

$$
\mu=|\operatorname{det} J|=a_{1} a_{2}\left|s_{2}\right|
$$

Velocity-Force Relation

From Osama Khatib

Velocity Force Duality

$$
\begin{aligned}
& \overbrace{\substack{y \\
y}}^{\omega} \quad v=\omega \times p \\
& v=-\hat{p} \omega \\
& \binom{v_{x}}{v_{y}}=\binom{-p_{y}}{p_{x}} \dot{\theta} \\
& v=J \dot{\theta}
\end{aligned}
$$

$$
\begin{aligned}
& \tau=(-\hat{p})^{T} F \\
& \tau=\left(\begin{array}{ll}
-p_{y} & p_{x}
\end{array}\right)\binom{F_{x}}{F_{y}} \\
& \tau=J^{T} F
\end{aligned}
$$

Velocity Force Duality

$$
\begin{aligned}
\zeta & =J \dot{\theta} \\
\tau & =J^{T} F
\end{aligned}
$$

$$
F=\left[\begin{array}{l}
f \\
n
\end{array}\right]
$$

Statics

From Osama Khatib

Internal Force Elimination

How to do the elimination

Prismatic Joint

$$
\tau_{i}=f_{i}^{T} Z_{i}
$$

Revolute Joint

$$
\tau_{i}=n_{i}^{T} Z_{i}
$$

Algorithm

$$
\begin{aligned}
& { }^{n} f_{n}={ }^{n} f \\
& { }^{n} n_{n}={ }^{n} n+{ }^{n} P_{n+1} \times{ }^{n} f \\
& { }^{i} f_{i}={ }_{i+1}^{i} R \cdot{ }^{i+1} f_{i+1} \\
& { }^{i} n_{i}={ }_{i+1}{ }^{i} R \cdot{ }^{i+1} n_{i+1}+{ }^{i} P_{i+1} \times{ }^{i} f_{i}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \overbrace{0}^{(\mathrm{x}, \mathrm{y})} \quad J=\left(\begin{array}{cc}
-\left(l_{1} S 1+l_{2} S 12\right) & -l_{2} S 12 \\
l_{1} C 1+l_{2} C 12 & l_{2} C 12
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tau=J^{T} F \\
& l_{1}=l_{2}=1 ; \quad \theta_{1}=0 ; \theta_{2}=60^{\circ} \\
& \tau=\left(\begin{array}{cc}
-\left(l_{1} S 1+l_{2} S 12\right) & l_{1} C 1+l_{2} C 12 \\
-l_{2} S 12 & l_{2} C 12
\end{array}\right)\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=-\left[\begin{array}{l}
l_{1} C 1+l_{2} C 12 \\
l_{2} C 12
\end{array}\right]=-\left[\begin{array}{l}
3 / 2 \\
1 / 2
\end{array}\right]
\end{aligned}
$$

