MTR08114 Robotics
 Dynamics
 Yasser F. O. Mohammad

REMINDER 1: The whole Jacobian (METHOD 1)

- Revolute Joint

$$
J_{i}=\left[\begin{array}{c}
z_{i-1} \times\left(o_{n}-o_{i-1}\right) \\
z_{i-1}
\end{array}\right]
$$

- Prismatic Joint

$$
J_{i}=\left[\begin{array}{c}
z_{i-1} \\
0
\end{array}\right]
$$

REMINDER 2: Wrist Singularities

- Whenever z_{3} and z_{5} are aligned
- Prove it

REMINDER 3: Elbow Singularity

$$
J_{11}=\left[\begin{array}{ccc}
-a_{2} s_{1} c_{2}-a_{3} s_{1} c_{23} & -a_{2} s_{2} c_{1}-a_{3} s_{23} c_{1} & -a_{3} c_{1} s_{23} \\
a_{2} c_{1} c_{2}+a_{3} c_{1} c_{23} & -a_{2} s_{1} s_{2}-a_{3} s_{1} s_{23} & -a_{3} s_{1} s_{23} \\
0 & a_{2} c_{2}+a_{3} c_{23} & a_{3} c_{23}
\end{array}\right]
$$

REMINDER 4: Resolved Motion Rate Control (Whitney 1972)

$$
\delta x=J(\theta) \delta \theta
$$

Outside singularities

$$
\delta \theta=J^{-1}(\theta) \delta x
$$

Arm at Configuration θ

$$
\begin{gathered}
x=f(\theta) \\
\delta x=x_{d}-x \\
\delta \theta=J^{-1} \delta x \\
\theta^{+}=\theta+\delta \theta
\end{gathered}
$$

REMINDER 5: How to calculate J+

- Most difficult method (from definition):

$$
J^{+}=\left(J^{T} J\right)^{-1} J^{T}
$$

- Simplest Method (SVD):

$$
\begin{aligned}
& J=U \sum V^{T} \quad \sigma_{i=1}^{+}=1 / \sigma_{\varphi}, \quad \text { when } \sigma_{\vartheta} \neq 0 \\
& J^{+}=U^{T} \sum^{+} V
\end{aligned}
$$

REMINDER 6: Manipulability

$$
\mu=\prod_{i=1}^{m} \sigma_{i i}
$$

If the robot is not redundant ($\mathrm{n}<=6$)

$$
\mu=|\operatorname{det} J|
$$

REMINDER 7: Velocity Force

 Duality$$
\begin{aligned}
& \zeta=J \dot{\theta} \\
& \tau=J^{T} F \\
& F=\left[\begin{array}{l}
f \\
n
\end{array}\right]
\end{aligned}
$$

REMINDER 8: How to do the elimination

Prismatic Joint

$$
\tau_{i}=f_{i}^{T} Z_{i}
$$

Revolute Joint

$$
\tau_{i}=n_{i}{ }^{T} Z_{i}
$$

$$
\begin{aligned}
& { }^{n} f_{n}={ }^{n} f \\
& { }^{n} n_{n}={ }^{n} n+{ }^{n} P_{n+1} \times{ }^{n} f \\
& { }^{i} f_{i}={ }_{i+1}^{i} R \cdot{ }^{i+1} f_{i+1} \\
& { }^{i} n_{i}={ }_{i+1}{ }^{i} R \cdot{ }^{i+1} n_{i+1}+{ }^{i} P_{i+1} \times{ }^{i} f_{i}
\end{aligned}
$$

What is dynamics

- Relationship between forces and motion
- Two approaches:
- Traditional Newton laws approach
- Eular-Lagrange formulation
- In robotics we use Eular-Lagrange formulation because it is MUCH easier for complex objects.

Motivation (1D system)

$$
\begin{aligned}
& m \ddot{y}=f-m g \\
& m \ddot{y}=\frac{d}{d t}(m \dot{y})=\frac{d}{d t} \frac{\partial}{\partial \dot{y}}\left(\frac{1}{2} m \dot{y}^{2}\right)=\frac{d}{d t} \frac{\partial \mathcal{K}}{\partial \dot{y}} \\
& m g=\frac{\partial}{\partial y}(m g y)=\frac{\partial \mathcal{P}}{\partial y} \\
& \mathcal{L}=\mathcal{K}-\mathcal{P}=\frac{1}{2} m \dot{y}^{2}-m g y \\
& \frac{\partial \mathcal{L}}{\partial \dot{y}}=\frac{\partial \mathcal{K}}{\partial \dot{y}} \text { and } \frac{\partial \mathcal{L}}{\partial y}=-\frac{\partial \mathcal{P}}{\partial y} \\
& \frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{y}}-\frac{\partial \mathcal{L}}{\partial y}=f
\end{aligned}
$$

Eular- Lagrange Equation

$$
\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}}-\frac{\partial \mathcal{L}}{\partial q_{i}}=\tau_{i} \quad i=1, \ldots, n
$$

Kinetic Energy

Calculating Inertia Tensor in Fixed

Frame

$$
\begin{aligned}
I & =\left[\begin{array}{ccc}
I_{x x} & I_{x y} & I_{x z} \\
I_{y x} & I_{y y} & I_{y z} \\
I_{z x} & I_{z y} & I_{z z}
\end{array}\right] \\
I_{x x} & =\iiint\left(y^{2}+z^{2}\right) \rho(x, y, z) d x d y d z \\
I_{y y} & =\iiint\left(x^{2}+z^{2}\right) \rho(x, y, z) d x d y d z \\
I_{z z} & =\iiint\left(x^{2}+y^{2}\right) \rho(x, y, z) d x d y d z \\
I_{x y}=I_{y x} & =-\iiint x y \rho(x, y, z) d x d y d z \\
I_{x z}=I_{z x} & =-\iiint x z \rho(x, y, z) d x d y d z \\
I_{y z}=I_{z y} & =-\iiint y z \rho(x, y, z) d x d y d z
\end{aligned}
$$

Example (Uniform Solid)

$$
\begin{gathered}
I_{x x}=\int_{-c / 2}^{c / 2} \int_{-b / 2}^{b / 2} \int_{-a / 2}^{a / 2}\left(y^{2}+z^{2}\right) \rho(x, y, z) d x d y d z=\rho \frac{a b c}{12}\left(b^{2}+c^{2}\right) \\
I_{y y}=\rho \frac{a b c}{12}\left(a^{2}+c^{2}\right) ; \quad I_{z z}=\rho \frac{a b c}{12}\left(a^{2}+b^{2}\right)
\end{gathered}
$$

Moving Inertia Tensor Between

Frames

$$
\mathcal{I}=R I R^{T}
$$

Kinetic Energy for N Links Robot

$$
v_{i}=J_{v_{i}}(q) \dot{q}, \quad \omega_{i}=J_{\omega_{i}}(q) \dot{q}
$$

$$
K=\frac{1}{2} \dot{q}^{T} \sum_{i=1}^{n}\left[m_{i} J_{v_{i}}(q)^{T} J_{v_{i}}(q)+J_{\omega_{i}}(q)^{T} R_{i}(q) I_{i} R_{i}(q)^{T} J_{\omega_{i}}(q)\right] \dot{q}
$$

$$
K=\frac{1}{2} \dot{q}^{T} D(q) \dot{q}
$$

Potential Energy for N Link Robot

$$
P_{i}=g^{T} r_{c i} m_{i}
$$

Eular-Lagrange Equation of a Robot

$$
D(q) \ddot{q}+C(q, \dot{q}) \dot{q}+g(q)=\pi
$$

$$
\begin{aligned}
c_{k j} & =\sum_{i=1}^{n} c_{i j k}(q) \dot{q}_{i} \\
& =\sum_{i=1}^{n} \frac{1}{2}\left\{\frac{\partial d_{k j}}{\partial q_{j}}+\frac{\partial d_{k i}}{\partial q_{j}}-\frac{\partial d_{i j}}{\partial q_{k}}\right\} \dot{q}_{i}
\end{aligned}
$$

Christoffel Symbols of the first order

Example 2D Cartesian (PP)

$$
\begin{gathered}
v_{c 1}=J_{v_{c 1} 1} \dot{q} \\
J_{v_{c 1}}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right], \quad \dot{q}=\left[\begin{array}{c}
\dot{q}_{1} \\
\dot{q}_{2}
\end{array}\right] \\
v_{c 2}=J_{v_{c 2}} \dot{q} \\
J_{v_{c 2}}=\left[\begin{array}{cc}
0 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
K & =\frac{1}{2} \dot{q}^{T}\left\{m_{1} J_{v_{c}}^{T} J_{v_{c 1}}+m_{2} J_{v_{c 2}}^{T} J_{v_{c 2}}\right\} \dot{q} \\
D & =\left[\begin{array}{cc}
m_{1}+m_{2} & 0 \\
0 & m_{2}
\end{array}\right] \\
P & =g\left(m_{1}+m_{2}\right) q_{1} \\
\phi_{1} & =\frac{\partial P}{\partial q_{1}}=g\left(m_{1}+m_{2}\right), \quad \phi_{2}=\frac{\partial P}{\partial q_{2}}=0
\end{aligned}
$$

$$
\begin{aligned}
\left(m_{1}+m_{2}\right) \ddot{q}_{1}+g\left(m_{1}+m_{2}\right) & =f_{1} \\
m_{2} \ddot{q}_{2} & =f_{2}
\end{aligned}
$$

Planar Elbow

$$
\begin{aligned}
v_{c 1} & =J_{v_{c 1}} \dot{q} \\
J_{v_{c 1}} & =\left[\begin{array}{cc}
-\ell_{c} \sin q_{1} & 0 \\
\ell_{c 1} \cos q_{1} & 0 \\
0 & 0
\end{array}\right] \\
v_{c 2} & =J_{v_{c 2}} \dot{q}
\end{aligned}
$$

$$
J_{v_{c 2}}=\left[\begin{array}{cc}
-\ell_{1} \sin q_{1}-\ell_{c 2} \sin \left(q_{1}+q_{2}\right) & -\ell_{c 2} \sin \left(q_{1}+q_{2}\right) \\
\ell_{1} \cos q_{1}+\ell_{c 2} \cos \left(q_{1}+q_{2}\right) & \ell_{c 2} \cos \left(q_{1}+q_{2}\right) \\
0 & 0
\end{array}\right]
$$

$$
\frac{1}{2} m_{1} v_{c 1}^{T} v_{c 1}+\frac{1}{2} m_{2} v_{c 2}^{T} v_{c 2}=\frac{1}{2} \dot{q}\left\{m_{1} J_{v_{c 1}}^{T} J_{v_{c 1}}+m_{2} J_{v_{c 2}}^{T} J_{v_{c 2}}\right\} \dot{q}
$$

Planar Elbow

$$
\begin{aligned}
& \omega_{1}=\dot{q}_{1} k, \quad \omega_{2}=\left(\dot{q}_{1}+\dot{q}_{2}\right) k \\
& \frac{1}{2} \dot{q}^{T}\left\{I_{1}\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right]+I_{2}\left[\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right]\right\} \dot{q}
\end{aligned}
$$

$$
D(q)=m_{1} J_{v_{c 1}}^{T} J_{v_{c 1}}+m_{2} J_{v_{c 2}}^{T} J_{v_{c 2}}+\left[\begin{array}{cc}
I_{1}+I_{2} & I_{2} \\
I_{2} & I_{2}
\end{array}\right]
$$

$$
d_{11}=m_{1} \ell_{c 1}^{2}+m_{2}\left(\ell_{1}^{2}+\ell_{c 2}^{2}+2 \ell_{1} \ell_{c 2}^{2}+2 \ell_{1} \ell_{c 2} \cos q_{2}\right)+I_{1}+I_{2}
$$

$$
d_{12}=d_{21}=m_{2}\left(\ell_{c 2}^{2}+\ell_{1} \ell_{c 2} \cos q_{2}\right)+I_{2}
$$

$$
d_{22}=m_{2} \ell_{c 2}^{2}+I_{2}
$$

Planar Elbow

$$
\begin{aligned}
c_{111} & =\frac{1}{2} \frac{\partial d_{11}}{\partial q_{1}}=0 \\
c_{121} & =c_{211}=\frac{1}{2} \frac{\partial d_{11}}{\partial q_{2}}=-m_{2} \ell_{1} \ell_{c 2} \sin q_{2}=: h \\
c_{221} & =\frac{\partial d_{12}}{\partial q_{2}}-\frac{1}{2} \frac{\partial d_{22}}{\partial q_{1}}=h \\
c_{112} & =\frac{\partial d_{21}}{\partial q_{1}}-\frac{1}{2} \frac{\partial d_{11}}{\partial q_{2}}=-h \\
c_{122} & =c_{212}=\frac{1}{2} \frac{\partial d_{22}}{\partial q_{1}}=0 \\
c_{222} & =\frac{1}{2} \frac{\partial d_{22}}{\partial q_{2}}=0
\end{aligned}
$$

Planar Elbow

$$
\left.\begin{array}{rl}
P_{1} & =m_{1} g \ell_{c 1} \sin q_{1} \\
P_{2} & =m_{2} g\left(\ell_{1} \sin q_{1}+\ell_{c 2} \sin \left(q_{1}+q_{2}\right)\right) \\
P & =P_{1}+P_{2}=\left(m_{1} \ell_{c 1}+m_{2} \ell_{1}\right) g \sin q_{1}+m_{2} \ell_{c 2} g \sin \left(q_{1}+q_{2}\right) \\
\phi_{1}= & \frac{\partial P}{\partial q_{1}}=\left(m_{1} \ell_{c 1}+m_{2} \ell_{1}\right) g \cos q_{1}+m_{2} \ell_{c 2} g \cos \left(q_{1}+q_{2}\right) \\
\phi_{2}= & \frac{\partial P}{\partial q_{2}}=m_{2} \ell_{c 2} \cos \left(q_{1}+q_{2}\right) \\
d_{11} \ddot{q}_{1}+d_{12} \ddot{q}_{2}+c_{121} \dot{q}_{1} \dot{q}_{2}+c_{211} \dot{q}_{2} \dot{q}_{1}+c_{221} \dot{q}_{2}^{2}+\phi_{1}=\tau_{1} \\
d_{21} \ddot{q}_{1}+d_{22} \ddot{q}_{2}+c_{112} \dot{q}_{1}^{2}+\phi_{2}=\tau_{2}
\end{array}\right] \begin{gathered}
C=\left[\begin{array}{cc}
h \dot{q}_{2} & h \dot{q}_{2}+h \dot{q}_{1} \\
-h \dot{q}_{1} & 0
\end{array}\right]
\end{gathered}
$$

