
Supply Chain Management League
(std-collusion)

Automated Negotiating Agents Competition

SCML Organizing Committee:

Y. Mohammed, E. Areyan Viqueira, A. Greenwald, K. Fujita, M. Klein, S. Morinaga, S. Nakadai

March 6, 2023

Contents

1 Overview 3

2 Game Entities 5
2.1 The Environment . 5
2.2 Agents: The Decision-Makers . 6

3 Negotiation 6
3.1 Mechanism . 6
3.2 Data Structures . 7

4 Contract Execution 8
4.1 Breach Processing . 8
4.2 Bankruptcy . 8
4.3 Spot Market Prices . 9
4.4 Examples . 9

5 Information 10
5.1 Private Information . 11
5.2 Public Information . 11

6 Simulation Steps 11

7 The SCML Platform 13
7.1 Negotiators . 13
7.2 Agents (Factory Managers) . 13

7.2.1 Callbacks . 13
7.2.2 Actions . 14

8 Tournament Mechanics 14

1

CONTENTS
A Appendix 15

A.1 Simulation Parameters . 15
A.2 World Configurations . 16
A.3 Tournament Generation . 18

2

1 Overview

The SCM world simulates a supply chain consisting of multiple factories that buy and sell products from
one another. The factories are represented by autonomous agents that act as factory managers. Each agent
decides which other agents to buy and sell from, and then negotiates with them. Their goal is to turn a
profit, and the agent with the highest profit (averaged over multiple simulations) wins.

The simulation proceeds in discrete time steps, which we refer to as days. During each day, multiple
simultaneous negotiations transpire, and outputs are manufactured from inputs. The game is intended
to further research on agent negotiation; as such the design emphasizes negotiation and de-emphasizes
operations (e.g., scheduling).

Factories Factories in the SCM world convert products into other products by running manufacturing
processes on their production lines. All processes take one day to complete. Factories store the inputs
and outputs of manufacturing processes in their inventories, and their funds in their accounts.

Each factory has multiple production lines, each of which is assigned a profile specifying the cost at which
it can execute the various manufacturing processes. In general, these costs can vary from factory to factory,
may vary from line to line. In SCML2021, however, each factory will have a set of identical production lines,
each of which can run only a single manufacturing process (i.e., all other processes will have infinite cost).

Factory costs are private information: i.e., no factory knows any other factory’s costs.

Production Graph The production graph is assumed to be directed and acyclic, with products and
manufacturing processes as its nodes. An edge from a product to a process node indicates that this product
is an input to this process. An edge from a process to a product node indicates that this product is an output
of this process. (Note that there are no edges between product or between process nodes.)

Figure 1 depicts a sample production graph for SCML2021. Observe that it is a chain. Because each
factory can run only one manufacturing process in SCML2021, each can likewise be assigned to only one
production level, corresponding to their particular process assignment.

𝑝" 𝑚" 𝑝$

…….. ……..

𝑝% 𝑚% 𝑝%&$ 𝑝'($ 𝑚'($ 𝑝'

𝑛"%' 𝑛"*+, 𝑛$%' 𝑛%($*+, 𝑛%&$%'𝑛%%' 𝑛%*+, 𝑛'(-*+, 𝑛'($%' 𝑛'($*+,

Product Process

Figure 1: A sample production graph, with manufacturing processes m and products p. Numbers (denoted
by n) on edges indicate the quantity consumed or produced by the corresponding manufacturing process.

Agents and Negotiation The agents in the SCM world function as factory managers. In addition to
managing production, they negotiate with other agents to reach agreements to buy and sell products, which
they can then sign as contracts. Such agreements are generated via bilateral negotiations using a variant of
the alternating offers protocol typically used in ANAC competitions [1, 2]. Each offer specifies a buyer,
a seller, a product, a quantity, a delivery time, and a unit price. The sequences of offers and counteroffers
in a negotiation are private to the negotiating parties.

In SCML2021, agents negotiations are restricted such that they can only negotiate to buy inputs required
for their own production, and to sell outputs produced by their own factory. No other negotiations are
allowed; in particular, there are no “middle men” in the SCML2021 world.

The SCM world does not endow agents with utility functions. On the contrary, all utility functions are
endogenous, meaning they are engendered by the simulation dynamics and agents’ interactions with other

3

agents. Endogenous utility functions are a distinguishing feature of SCML. It is an agent’s job to assign
utilities to potential contracts, given its unique production capabilities, and then to negotiate with other
agents to secure those which are most favorable to them.

In SCML2021, agents consuming the raw material will be endowed with exogenous buy contracts but no
exogenous sell contracts, while agents producing the finished product will be endowed with exogenous sell
contracts but no exogenous buy contracts. No other agents will be endowed with any exogenous contracts.
By design, no agent can turn a profit without negotiating successfully, since no agent is endowed with both
exogenous buy and exogenous sell contracts.

Breach Processing When a contract comes due, the simulator tries to execute it (i.e., move products
from the seller’s inventory to the buyer’s, and move money from the buyer’s account to the seller’s). If this
execution fails, either because of insufficient funds on the part of the buyer, insufficient products on the part
of the seller, a breach of contract occurs. Figure 2(a) depicts these two possible breach conditions. In both
cases, the contract is executed to the extent possible, and the agent in breach of contract is penalized and
reported to the breach list. (See Section 4.1 for details.)

Bankruptcy Processing If an agent is unable to meet its financial obligations, it is declared bankrupt.
The assets of bankrupt agents are liquidated, and their factories are closed (no further production can
transpire). They can no longer participate in negotiations. The simulator takes over their outstanding
contracts, and fulfills them to the extent possible. (See Section 4.2 for details.)

Spot Market The SCM world also simulates a spot market. Generally speaking, the spot market exists
so that agents who would otherwise be in breach of contract for insufficient products (funds) can instead buy
(sell) as necessary on the spot market at buy (sell) prices, which are always above (below) trading prices—
an average over the historic prices at which products are traded. In SCML2021 specifically, sellers with
insufficient products are forced to buy on the spot market, while buyers with insufficient funds are declared
bankrupt immediately, in which case the simulator uses the spot market for liquidating the inventory of
bankrupt agents. (See Section 4.3 for details.)

Bulletin Board The SCM world contains a world-readable bulletin board (see Figure 2(b)) that conveys
both static and dynamic information about the game and all factories over the course of the simulation. The
static information includes the simulator settings (e.g., number of simulated days), and product information,
namely a list of the consumers and producers of all products (i.e., all factory’s positions in the production
graph), and catalog prices, one per product, which is a nominal price that represents the starting point
of trading prices, and can also be used by agents to guide negotiations. The dynamic information includes
a breach list, where breaches of contract are reported; and a financial news section, which is updated only
periodically (except in the case of bankruptcy), that reports the financial standing of all factories.

Note that trading prices are not known to the agents. They are maintained by the simulator for use in
breach and bankruptcy processing, and for valuing inventory at the end of a game.

The Simulation Each simulation of the SCM world runs for multiple (say, 1000) days. Before the first
day, each agent is assigned a private manufacturing profile. In addition, the bulletin board is populated
with the production graph information and catalog prices, an initial balance is deposited into each agent’s
account, and agents are endowed with exogenous contracts. Then, during each day:

1. Agents can engage in multiple (say, 100) rounds of negotiations with their negotiating partners. They
can also read the bulletin board, and request negotiations with other agents (for the next day).

2. All contracts that have come due are executed: i.e., products are moved from the seller’s inventory to
the buyer’s, and money is moved from the buyer’s account to the seller’s.

4

(a) The two potential breach conditions:
insufficient funds and insufficient products.

Bulletin Board

Breach
Level

0.1

0.3

0.2

Breach List

Step
Assets

Balance

Breach Level

Breach Prob

Bankrupt?

12 130$ 100$ 0 0 no

12 180$ - 2,5$.1 .2 yes

24 200$ 80$.1 .3 no

23 0 -101$.5 .8 yes

Financial Reports

Product

Catalog
Price

Trading
Price

Exogenous
In/O

ut

Sellers

B
uyers

22 7.5 16/
0

85 99 0/
12

Products

Settings

Setting

Value

n.
steps

500

Time
Limit

6000

….. ….

(b) The bulletin board includes Simulator Settings, Product In-
formation, Financial Reports, and the Breach List.

Figure 2: Breach conditions and the bulletin board.

3. The manufacturing processes on all lines in all factories are run: i.e., inputs are removed from inventory,
outputs are stored in inventory, and production costs are subtracted from the factories’ accounts.

2 Game Entities

In this section, we describe the components of the SCM world—the environment and the agents. By the
environment, we mean the manufacturing structure—what can be manufactured and how. By the agents,
we mean autonomous entities that make decisions about what to buy, what to sell, what to manufacture,
and when to engage in all of these activities.

2.1 The Environment

The manufacturing structure of an SCM world—what can be manufactured and how—is represented by a
production graph. This graph comprises a set of products P and a set of manufacturing processes M ,
and specifies which inputs and processes are used to produce which outputs. The specific manufacturing
structure varies randomly from simulation to simulation, but this structure is posted on the bulletin board
at the start.

Although the SCM world supports directed acyclic graphs,1 the production graph used in SCML2021 is
a chain, with but one raw material (p0), but one finished product (pn), and n − 1 intermediate products,
p1, . . . , pn−1. Correspondingly, there is a set M of manufacturing processes, starting at process m0 and
ending at process mn−1, with each intermediate process mi for i ∈ {0, . . . , n− 1}, taking as input one unit
of product pi, and producing as output one unit of product pi+1. Manufacturing processes consume their
inputs at the beginning of the day on which they are executed, and produce their outputs at the end of this
same day, making them available in the factory’s inventory at the beginning of the next day.

In addition, there is a set of factories F , each of which is endowed with certain manufacturing capabilities.
Specifically, each factory f ∈ F is characterized by a manufacturing profile that consists of a set of lines
La together with a cost function Ca : La ×M → Z+

∞, which indicates the cost of running process m ∈ M
on line l ∈ La. In SCML2021, each factory is capable of running only one process in the production graph:
i.e., the cost of running any processes other than that one is infinite. Moreover, the cost of running that
process does not vary across a factory’s multiple lines—although it can vary across factories. In addition,
production becomes more and more costly, on average, the closer a product comes to being finished.

1See http://www.yasserm.com/scml/scml.pdf (Chapter 1) for a detailed description of the space of manufacturing structures.

5

http://www.yasserm.com/scml/scml.pdf

2.2 Agents: The Decision-Makers
There is also a spot market in the SCM world, which in SCML2021 is used only by the simulator during

breach and bankruptcy processing (see Sections 4.1 and 4.2). The buy (sell) price on the spot market is
always above (below) the trading price, by an amount determined by the spot market global penalty and
an agent’s personalized spot market penalty , depending on its reliance on the spot market (see Section 4.3).

2.2 Agents: The Decision-Makers

Manufacture and trade in the SCM world are directed by autonomous, decision-making agents, who function
as factory managers. As such, at the start of a simulation, each agent is assigned a factory to manage.2 The
factory that the agent manages is announced publicly, but each factory’s manufacturing profile is private
information, known only to its factory manager. Throughout a simulation, an agent’s state is described
by the state of its factory (i.e., its scheduled jobs), its account balance, its inventory, a set of negotiated
contracts, and a set of exogenous contracts. More specifically:

Factory state A list of manufacturing jobs J scheduled for execution in the agent’s factory (a ∈ F). Each
such job j ∈ J is a tuple (tj , lj ,mj) indicating that the manufacturing process mj ∈ M should be
initiated on line lj ∈ La on day tj ∈ Z+. This list is maintained by the agent.

Inventory S : P → Z+
0 The current inventory of all products at the agent’s factory a. This quantity is

maintained by the simulator.

Balance B ∈ ℜ The account balance accumulated by the agent’s factory a. This quantity is maintained by
the simulator.

Negotiated contracts C A list of contracts representing agreements with other agents. This list is updated
by the simulator whenever two agents sign a contract.

Exogenous contracts E A list of exogenous buy and exogenous sell contracts. Exogenous contracts are
private information, revealed h days in advance of a contract’s delivery date (where h ∈ Z+ is the
exogenous contracts horizon).

3 Negotiation

At a high-level, negotiating to reach an agreement, and then signing a contract, proceed as follows:

1. An agent contacts another, requesting a negotiation, and specifying the negotiation issues in an agenda.

2. If the request is accepted, negotiation proceeds via the alternating offers protocol (see Section 3.1).

3. If the negotiation successfully reaches an agreement, the agents are given the opportunity to make the
agreement binding, by signing a contract.

Either party can cancel a successfully negotiated agreement without penalty by refusing to sign it. Giving
agents the opportunity to either sign or not sign contracts is similar to the CONFIRM message of [3]. To
reduce the load on the system, every agent is assigned a negotiation quota, which is an upper bound on the
number of negotiations it can request on any given day.

3.1 Mechanism

The negotiation mechanism adopted by SCML2021 [4] is a variant of Rubinstein’s alternating offers proto-
col [5]. It involves two agents, who take turns making offers for a finite number of rounds and/or seconds.
One agent open the negotiation with an offer, after which the other agent takes one of the following actions:

2In SCML2021, each agent will manage only one factory. In future years, agents may manage multiple factories.

6

3.2 Data Structures
1. Accepts the offer

2. Responds with a counteroffer, thus rejecting and overriding the previous offer

3. Walks away, thus declaring an end to the negotiation, without having reached an agreement

This process repeats until either an agreement or a deadline is reached. To reach an agreement, both parties
must accept the offer. If no agreement is reached by the deadline, the negotiation fails.

A key difference between the variant of the protocol used in the SCM world and other implementations
of the alternating offers protocol is that in the first round of negotiations in the SCM world, both agents are
asked to propose, and then one of these proposals is chosen at random to be the initial offer. Consequently,
agents do not know whether they were the first to propose or not. This trick was designed to prevent the
protocol from degenerating into an ultimatum game [6], which can happen in a simulation such as the SCM
world, if the maximum number of rounds of negotiation is announced a priori. With this trick in place,
however, the actual number of rounds can only ever be known up to a factor of ±1.

All negotiations in the SCM world must be completed within a fixed number of rounds (e.g., 100) and
within a fixed amount of time (e.g., 2 minutes). Additionally, each agent has a fixed amount of time (e.g.,
10 seconds) in which to respond to an offer or propose a new one.

Note that anything pertaining to negotiations between agents is private information. No other agents
except those negotiating see any intermediate offers or responses, nor any final agreed-upon contracts.

3.2 Data Structures

An agent invites other agents to negotiate with it by sending it a negotiation request, with a negotiation
agenda. When one agent responds positively to another’s request, a negotiation ensues.

A negotiation agenda ν is a tuple (kν , aν , pν , uν , qν , tν), where:

Kind kν ∈ {buy, sell} Indicates whether the agent is looking to buy or sell.

Agent aν ∈ A The agent requesting the negotiation.

Product pν ∈ P The product.

Negotiation Issues The issues the agent wants to negotiate about, which can be any of the following:

Unit Price uν The unit price range.

Quantity qν The quantity range.

Delivery Time tν The delivery time range.

The unit price, quantity, delivery time are ranges of integers specifying a range of negotiable values. A single
value (rather than a range) is used to indicate a non-negotiable issue.

An offer o is a triple (uo, qo, to) consisting of a unit price uo ∈ Z+, a quantity qo ∈ Z+, and a delivery
time to ∈ Z+. Note that the precise value of each issue must be precisely specified in an offer; offers cannot
include any ranges.

A contract c is a tuple (sc, bc, pc, oc), where

Seller sc ∈ A The seller agent.

Buyer bc ∈ A The buyer agent.

Product pc ∈ P The product.

Offer oc The agreed upon offer.

7

A contract also includes several bits indicating whether or not it has been signed, cancelled, or nullified. It
is signed if both parties sign. It is cancelled if either party does not sign. It is nullified if either party goes
bankrupt before it is executed. In case a contract has been signed, the signatories and the signing date are
recorded. In case a contract has been cancelled or nullified, the relevant date is recorded.

An agreement is an unsigned contract which has not been cancelled or nullified. An exogenous
contract (agreement) is a contract (agreement) in which one of the buyer or the seller is the simulator.

4 Contract Execution

When a contract becomes due, the simulator attempts to execute it. Successful execution involves transferring
the agreed-upon quantity of products from the seller’s inventory to the buyer’s, and likewise transferring the
agreed-upon value of the contract from the buyer’s account to the seller’s. In the event that a contract does
not execute successfully, either because of insufficient funds or insufficient products, a breach occurs, and
perhaps even a bankruptcy. In this section, we describe breach and bankruptcy processing.

4.1 Breach Processing

Buyers can commit a breach for insufficient funds, while sellers can commit a breach for insufficient products.
The game is designed so that breaching a contract should lead to a financial loss.

Table 1: Breach Conditions and Levels. The maximum breach level is 1.

Cause Criterion Perpetrator Breach Level

Insufficient funds bc.f.Wa < ucqc Buyer bc
ucqc−bc.f.Wa

ucqc

Insufficient products sc.f.Sa(pc) < qc Seller sc
qc−sc.f.Sa(pc)

qc

x.f is the factory associated with agent x.
Wa is the balance in factory f ’s account (after any borrowing). Sa is factory f ’s inventory level.
pc, uc, qc are the product, unit price, quantity specified in contract c.

Table 1 describes the circumstances of breaches and the levels that ensue. When an agent commits a
breach (insufficient funds for a buyer, or insufficient products for a seller), a breach report is published on
the bulletin board. Each breach report is a tuple (a, l, k), where a ∈ A is the agent that caused the breach,
l ∈ (0, 1] is the breach level, with larger values corresponding to more severe breaches, and k ∈ {insufficient
funds, insufficient products} is the kind of breach committed.

In SCML2021, when an agent commits an insufficient products breach, it is forced to buy products on
the spot market to make up for its shortfall. When an agent commits an insufficient funds breach, it is
declared bankrupt immediately. But one insufficient funds breach by a buyer leads to bankruptcy. Likewise,
but one insufficient products breach by a seller, which cannot be fulfilled at spot market prices—so leads to
an insufficient funds breach—leads to bankruptcy.

4.2 Bankruptcy

If ever an agent commits an insufficient funds breach, so that its balance would become negative, it is declared
bankrupt immediately. The bankrupt agent is prevented from engaging in any further negotiations, and its
factory is closed (no further production can transpire).

A bankrupt agent’s inventory is liquidated on the spot market at sell (i.e., relatively low) prices. Future
contracts with a bankrupt agent are then transferred to the simulator, which uses the cash from the liqui-
dation to honor each of these contracts to the extent possible on the day they come due, buying products
as necessary from the spot market at buy (i.e., relatively high) prices.

8

4.3 Spot Market Prices
Finally, a financial report for a bankrupt agent is posted to the bulletin board immediately, and agents

are informed through independent channels as well (see Section 7.2.1; On Agent Bankrupt).

4.3 Spot Market Prices

The spot market prices depend on catalog prices, past trading prices, and agents’ individual spot market
price penalties. The terms are intended to penalize those agents who rely on the spot market more often,
more than those that don’t.

The trading price (tp) for product p on day d is calculated as follows:

trading price(p, d) ≡ tp(p, d) =
γd+1 Q−1(p) cat(p) +

∑d
i=0 γ

d−i Qi(p) µi(p)

γd+1 Q−1(p) +
∑d

i=0 γ
d−i Qi(p)

, (1)

where cat(p) is the catalog price of product p, γ ∈ [0, 1] is a discount factor (trading price discount factor),
Q0(p) is a weight representing the effective quantity that is represented by the catalog price (prior catalog
price quantity), Qi(p) is the total quantity of product p traded on day i (in contracts executed even partially
on that day), and µi(p) is the average price per item at which product p traded at day i. More specifically,

Qi(p
′) =

∑
{c∈Ci|c.p=p′}

c.q̄ and µi(p
′) =

∑
{c∈Ci|c.p=p′} c.q̄ × c.u

Qi(p′)
,

where Ci is the set of all contracts executed (even partially) on day i, c.p is the product traded via contract
c, c.u is the unit price of contract c, and c.q̄ is the actual quantity exchanged (which is less than the agreed
upon quantity whenever a breach occurs).

Agent a’s spot market price penalty (ip; individual penalty) for product p on day s is computed as follows:

spot market price penaltya(p, d) ≡ ipa(p, d) = λ

d∑
i=0

αd−iqa(p, i) , (2)

where λ ≥ 0 and α ∈ [0, 1] are simulation parameters, and qa(p, i) is the total number of units of product p
bought on the spot market by agent a on day i. Note that an agent’s penalty for day s is calculated before
it buys any products on the spot market. Consequently, the amount (about to be) bought impacts the spot
market price. Further, buying a units incurs a higher penalty than buying b units, for a > b.

An agent a is forced to buy products on the spot market if it commits a product breach, at the price
tp(p, d) × (1 + gp) × (1 + ipa(p, d)). If agent a goes bankrupt, the simulator sells its inventory on the spot
market, at the price tp(p, d)/((1 + gp)× (1 + ipa(p, d)), where gp is the spot market global penalty .

4.4 Examples

Breach Processing Suppose agent A’s spot market price penalty for product p is 0.1, the spot market
global penalty is 0.2, and p’s trading price is 7 dollars. Further, assume a contract on day 3 that specifies
that A should sell 10 units of product p to agent B at unit price of 5 on day 4. When day 4 arrives, A has
only 6 units in inventory, while B has only 21 dollars in its account. As a result, A commits a 4/10 = 0.4
level insufficient products breach and B commits a 29/50 = 0.58 level insufficient funds breach. A is then
forced to buy the missing 4 units on the spot market at a price of ⌈7 × 1.2 × 1.1⌉ = 10 dollars. As B can
only pay 21 dollars, it is declared bankrupt with a final balance of 21− 50 = −29.

Bankruptcy Processing Consider once again the example above. In addition, suppose that B’s inventory
contains 100 units of product p (trading price 8.4), 110 units of product p′ (trading price 14.4), and nothing
more. Finally, assume B’s spot market price penalty for p is 0,3 and for p′ is 0.5.

3Because p is B’s input product, it is guaranteed that it never bought it on the spot market before.

9

The bankruptcy procedure executes as follows.
First, B’s spot market selling price for each product is calculated, which in our example is 8.4/1.2 = 7 for

p, and 14.4/(1.2× 1.5) = 8 for p′. Then, everything in B’s inventory is liquidated on the spot market (at a
loss that depends on the agent’s spot market price penalty), generating proceeds of ⌊100×7+110×8⌋ = 1580
dollars, leaving the simulator 1580 + 21 = 1601 dollars with which to satisfy B’s outstanding contracts—
including the one that caused the bankruptcy—to the extent possible.

Next, this very contract—the one that caused the bankruptcy—is executed to the extent possible by the
simulator on behalf of B. Now that A has in its possession 10 units, and the simulator holds 1601 dollars on
behalf of B, their contract is executed normally, with 50 dollars transferred to A’s account from “B’s” (i.e.,
the simulator’s account on behalf of B), and 10 units of p removed from A’s inventory. N.B. The products
received by the simulator in the execution of this contract are not used for future contracts. More generally,
after liquidation, any further products or cash received by the simulator in the name of the bankrupt agent
are destroyed; they are not be used to honor future contracts.

Third, the simulator fulfills B’s other outstanding obligations to the extent possible, using the available
cash to either buy or sell products, in the latter case only after first buying them on the spot market. Assume
B has five other outstanding contracts when it goes bankrupt (day 4):

c1 Sell 50 units of p′ at a unit-price of 10 dollars to agent C on day 4.

c2 Buy 70 units of p at a unit-price of 5 dollars to agent D on day 5.

c3 Sell 50 units of p′ at a unit-price of 10 dollars to agent C on day 5.

c4 Buy 10 units of p at a unit-price of 20 dollars to agent D on day 6.

c5 Buy 16 units of p at a unit-price of 4 dollars to agent D on day 7.

To value future sell contracts, the simulator uses the price for buying p′ on the spot market on behalf of
B, which is ⌈14.4× 1.2× 1.5⌉ = 26. The total value of B’s future contracts is thus 50× 26 + 70× 5 + 50×
26 + 10× 20 + 16× 4 = 3214 dollars.

The simulator cannot possibly honor all of these contracts with the 1551 dollars available. Contracts are
honored in order of their delivery dates, which in this example is as follows. Contract c1, which comes due on
day 4, is executed normally, at a cost of 50×26 = 1300 dollars, leaving 1551−1300 = 251 dollars. Contracts
c2 and c3 (i.e., all the contracts that come due on day 5) cannot both be executed normally as they would
require 70 × 5 + 50 × 26 = 1650 dollars (> 251). As they cannot be fully executed, c2 and c3 are executed
in order of their signing times, resolving ties randomly. Let’s assume c3 was signed before c2. Contract c3
can be partially executed with the quantity ⌊251/26 = 9⌋, leaving 251 − 9 × 26 = 17 dollars. Contract c2
can then be partially executed with the quantity ⌊9/5⌋ = 1, leaving 9− 5× 1 = 4 dollars. The remaining 4
dollars cannot be used to satisfy any part of contract c4, so c4 is nullified. Finally, contract c5 is partially
exectued with a quantity of ⌊4/4⌋ = 1. At this point, all the liquidation money has been consumed, so all
remaining contracts, if any, are nullified.

Once this fulfillment schedule is determined, agent C is informed (immediately) that c1 will execute
normally, and that c3 is nullified but has been replaced with a new contract c′3, which is identical to c3,
except for the reduced quantity. Likewise, agent D is informed (immediately) that contract c4 is nullified,
and that c2 and c5 are also nullified, but have been replaced with new contracts c′2 and c′5, which are identical
to c2 and c5, except for the reduced quantities. All other agents (e.g., A) are informed (immediately) that
B is bankrupt via their On Agent Bankrupt callbacks.

5 Information

Some of the information in an SCML simulation is private to the agents to which it is germane (e.g.,
balances), while other information is public (e.g., trading prices). Moreover, some of the private information
is summarized for public consumption periodically.

10

5.1 Private Information
5.1 Private Information

All negotiations and ensuing contracts are private to the parties involved. All agents’ manufacturing profiles
are also private. Additionally, an agent’s state information is private. This state includes the agent’s current
account balance, its current inventory of both its input and output product, its past and current production
plans, and its exogenous contracts, if any.

5.2 Public Information

The SCM world maintains a bulletin board that broadcasts all public information. Some of this information
is static, such as the simulator settings (see Table 2). Other information is dynamic.

The simulator publishes three types of dynamic information on the bulletin board regularly: the market’s
status, the agents’ status (in the form of financial reports), and the breach list.

Market Status The simulator publishes the following market statistics on the bulletin board at the end
of every day for each product:

Exogenous Contract Summaries The total quantity and average price across all exogenous contracts
that day.

Trading Prices The current trading price (See Equation 1), which is a weighted sum of past trading prices.

Financial Reports The simulator also publishes information about each agent’s financial status periodi-
cally (every reporting period days). These reports contain the following information:

Balance The agent’s current balance. (A negative balance indicates a bankrupt agent.)

Inventory The value of the agent’s current inventory, evaluated at catalog prices.

Breach Probability The fraction of the agent’s contracts that it has breached thus far in the simulation.

Breach Level The agent’s breach level averaged across all days.

Breach List Finally, the simulator publishes a list of all breaches committed by all agents each day. Each
entry in this list is an agent name and a breach level on an unspecified contract (since contracts are private
information).

6 Simulation Steps

All SCM agents implement an initialization function and a step function. The former is called by the
simulator to initialize agents’ behavior, before day zero.4 After initialization, the simulator repeats the
following loop (Figure 3), which calls the agents’ step functions, among other things:

1. Run all registered negotiations for negotiation-speed-multiplier rounds. Concluded negotiations are
then registered for signing after signing-delay days. Moreover, exogenous contracts with delivery dates
in the upcoming exogenous contracts horizon days are registered for signing.

2. Sign (or not) all contracts registered for signing today (including exogenous ones).

3. Execute all contracts due to be executed today, by delivering products from the sellers to the buyers,
and transferring money from the buyers to the sellers. For those contracts that cannot be executed,
handle any potential breaches and report any bankruptcies.

4Following NegMAS, and to be consistent with most programming languages, the first simulation day in SCML is day zero.

11

Run Registered Negotiations and Register Exogenous Contracts
• on_negotiation_success() on_negotiation_failure()

Sign Contracts (negotiated and exogenous)
• sign_all_contracts() on_contracts_finalized()

Execute All Contracts
• on_contract_executed/breached() on_bankrupt_agent()

Step Agents
• init() before_step() step()

Update trading and spot market prices
No agent callbacks (these prices are NOT accessible to agents)

Run Production
• on_failure()

Publish Financial Reports
Can be accessed using awi.reports_of_agent and awi.reports_at_step

S

4

u

K
Y8

H

Figure 3: Order of execution of events each simulation day.

4. Call the step functions of all agents in an unspecified order. Doing so should trigger new negotiation
requests, potentially leading to new negotiations the following day.

5. Update the trading prices of all products and the per-agent spot market price price penalties.

6. Simulate one day of production for all manufacturing processes running on all lines in all factories.
Move all completed products to inventory.

7. Publish financial reports (every reporting period days).

There are a few details pertaining to timing worth mentioning:5

• To remember the order of events, you can think of poor negotiators meeting in the early morning
and working hard to make agreements (including exogenous ones). The CEOs then meet to sign only
the agreements they like, which become contracts, while having breakfast (on their yacht). Trucks
deliver products and money is transferred (i.e., contracts are executed) before noon (to avoid road
congestion). The CEO then messages the negotiators (mid-golf game) with instructions about the
next day’s negotiations. Factories then run until late into the evening. Financial reports are published
after the factories shut down for the night, weekly on Fridays.

• Since products are manufactured after contract execution, an agent can never sell its output products
on the same day they are manufactured. Nevertheless, it can use input products in production on the
same day they are bought. Similarly, it can use funds earned from sales for production on the same
day products are sold.

5These design choices maintain a clean separation between the underlying NegMAS platform and the SCML implementation.

12

7 The SCML Platform

Like SCML2019, SCML2021 will run on top of NegMAS [7], which is a Python framework for developing
autonomous negotiation agents embedded in simulation environments.

7.1 Negotiators

A negotiator is an entity that conducts negotiations on behalf of an agent. All negotiators must implement
the following interface:

Propose Proposes an offer, which is an assignment of values to all negotiation issues.

Respond Either accepts, rejects, or ends the negotiation, in response to an offer.

Negotiators are dynamic entities created by an agent for the purpose of negotiating a contract on its behalf.
Two types of negotiators are supported:

1. Empowered negotiators are full-on decision makers. They are assigned a utility function when they
are created, and they use their utility function to make offers and respond to others’ offers.

2. Pass-through negotiators merely pass offers and counteroffers through to the agent that created them.
Decision making is therefore wholly the responsibility of the creating agent, which is called a controller.
A controller typically manages multiple negotiators, deciding how to propose and respond for all of
them. Together, controllers and pass-through negotiators can be used to implement a centralized
negotiation strategy.

7.2 Agents (Factory Managers)

An agent (also called a factory manager) controls a factory in the SCM world.

7.2.1 Callbacks

Agents can implement a variety of callbacks. The simulator calls them at appropriate times during the
simulation. The callbacks starting with On need not return anything; they are merely informative. Other
callbacks require the agent to take some action (e.g., respond to a negotiation request, etc.).

The first two callbacks are called by the simulator’s main loop:

Init Called after the world is initialized, but before the simulation begins.

Befor Step Called in the simulation loop at the beginning of the day after exogenous contracts are created
and before any other calls to the agent.

Step Called in the simulation loop at the end of the day after all other calls to the agent are completed.

The next set of callbacks are event driven; they are triggered by the events their names suggest:

Respond to Negotiation Request Called whenever another agent requests a negotiation with this agent.
This agent can agree to negotiate or not. If the agent agrees, a new negotiation is registered.

Sign All Contracts Called by the simulator to allow the agent to sign all negotiated agreements, so that
they become binding contracts. In addition, potential exogenous agreements are revealed to the agent
in this callback, which like negotiated agreements, the agent is free to sign or not.

On Negotiation Success/Failure Called when a negotiation the agent is involved in terminates.

On Contracts Finalized Called with the set of signed and cancelled contracts. A contract is signed if
both parties sign. It is cancelled if either party does not sign.

13

On Agent Bankrupt Called when an agent is declared bankrupt to inform all other agents. Agents that
are party to any future contracts with the bankrupt agent receive a list of contracts that will be
nullified (i.e., cancelled and never executed), and those that will be partially executed (i.e., a smaller
than originally agreed upon nonzero quantity will be traded at the delivery time).

On Failure Called when production fails due to lack of requisite inputs or funds.

7.2.2 Actions

Agents control their negotiations and finances using the following actions:

Request Negotiation Sends a negotiation request to another agent. The requesting agent must specify a
negotiator to use for this negotiation.

Request Negotiations Sends a list of negotiation requests to a list of agents. The requesting agent must
specify a list of negotiators, or a controller, to use for this negotiation.

Schedule Production Adds a manufacturing process to a specified line to start on a specified day. If a
line is not given, the factory uses any available line. If the day is given as a range, the factory uses a
day in this range according to the scheduling method , which either schedules production on the latest
possible day, or on the earliest.

Cancel Production Cancels scheduled production.

Set Production Sets production for a given day (usually today) at all lines.

Agents can also gather information about their factory and other agents by accessing the Agent-World-
Interface. Available methods are:

Get State Reads the factory state.

Available For Production Returns the production slots (day/line) available for production.

Bulletin Board Access the bulletin board to read product information, financial reports, the breach list,
or simulation settings (e.g. number of days, current day, etc).

8 Tournament Mechanics

How to Participate To participate in the Supply Chain Management League (SCML), all you need to
do is write and submit code for an autonomous agent that acts as a factory manager. While the production
graph will be a chain in SCML2021, with agents managing but one factory with identical lines, your agent
should be robust enough to manage any such factory with any manufacturing profile (i.e., any factory
assignment and production cost), because its particular profile will vary from simulation to simulation.

How to Compete There will be three separate tracks in SCML2021. All agents will be run in both tracks.
In the standard track, at most one instantiation of each team’s agent will run in each simulation, together with
an unknown mix of agents prepared by other participants and agents prepared by the organizing committee.

In the collusion track, multiple instantiations of the same team’s agent will run during a single simulation.
The exact number of instantiations of each will vary across simulations, and will not be announced in advance.
In this track, it is perfectly legal for instances of the same agent to collude with one another to try to corner
the market, or exhibit other collusive behaviors.

The final track is the OneShot track which is a simplified version explained in details here. This document
is only concerned with the standard and collusion tracks.

14

http://www.yasserm.com/scml/scml2020oneshot.pdf

How to Win An agent’s6 performance will be measured by its score. An agent’s score will be the turncated
mean7 8 of its profits in all simulations. The profit of an agent type is the sum of the valuation of all the
factories it controls in this simulation9.

The profit accrued by an agent during one simulation is calculated as follows:

Profit =

∑
a∈F BN (f) + ϵ IN (f)−B0(f)∑

a∈F B0
, (3)

where, ϵ is the fraction of trading price at which to value the inventory at the end of the game10. F is the
set of all factories controlled by instantiations of the agent, B0(f) and BN (f) are the factory’s balances at
the beginning and end of the simulation, respectively, and IN (f) is the value of the products in the factory’s
inventory at the end of the game. This value is based on the trading price (see Equation 1), but to incentive
trade, inventory is valued at only half the trading price; that way, it is more profitable on average to sell
products rather than hoard them.

Since SCML 2022, the evaluation criterion for the collusion track was modified to disentangle the quality
of the collusion strategy from the quality of the standard strategy. For each configuration, M + 1 different
simulations will be run for each competitor. In the first simulation, it will control M factories and its
score is calcualted as explained earlier. In the other M simulations, it will control exactly one of these
facories (making collusion impossible) and non-competitors will control the other two. The final score for
the competitor in the collusion track, will be the difference between the socre it gets in the first simulation
(collusion on) and the average score it gets in the other M (collusion off)11.

The two tracks will be conducted in two rounds, a qualifying round and a final round. All entrants that
are not judged to break any of the SCML and ANAC submission rules will be entered into the qualifying
rounds. Top-scoring agents in the qualifying round will then be entered in the final round.

The final results will be announced at IJCAI 2021. It is expected that finalists will send a representative
to the ANAC workshop at IJCAI 2021, where they will be given the opportunity to give a brief presentation
describing their agent.

A Appendix

A.1 Simulation Parameters

The behavior of the simulator is controlled by the following hyperparameters. In this list, we first describe
the hyperparameter, and then indicate its variable name in the SCML code base (in parentheses).

Number of simulation days (n steps) ∈ Z+
∞ The maximum number of simulation days in a single run.

Total simulation time (time limit) ∈ ℜ+
∞ The maximum number of seconds in a single run.

Negotiation time limit (neg time limit) ∈ ℜ+
∞ The maximum number of seconds in a negotiation.

Negotiation rounds limit (neg n steps) ∈ Z+
∞ The maximum number of rounds in a negotiation.

Negotiation quota

6In this section, whenever we speak about an agent we mean its type not its instantiations.
7The truncated mean will be found by sorting all scores *per agent* and then removing the top and bottom xt, xb scores

where xt and xb are values selected by the organizing committee to balance test efficiency (taking into account as many
individual scores as possible in the final agent score) and robustness (insensitivity to outliers or few simulations in which the
agent gets extremely high or low scores.)

8In SCML2019, the agent’s score was the mean.
9This is different from the SCML2020 evaluation in which each factory’s score was counted separately. In 2021, we are using

a consolidated financial statement like evaluation.
10In SCML2020, this was fixed at 0.5. In 2021, it is fixed, again, at 0.5.
11Intentionally reducing the score of the agent in non-colluding sessions will be considered a form of cheating.

15

A.2 World Configurations
Offer Time Limit (neg step time limit) ∈ ℜ+

∞ The number of seconds between acceptable offers. If an
offer is not received within this time limit, the negotiation ends.

Negotiation speed multiplier (negotiation speed) ∈ Z+
∞ The number of rounds in a negotiation per

simulation day.

Exogenous contracts horizon (exogenous contracts horizon) Maximum number of days in advance
of an exogenous contract’s delivery date when it is revealed to an agent, given as a percentage of the
total number of days in the simulation. For example, a value of 10% in a 500 day game means that all
exogenous contracts that arrive on a given day have a delivery date at most 50 days in the future.

Reporting period (reporting period) The number of days between periodic financial reports.

Table 2 lists the simulator parameters and their settings for SCML 2021.

Table 2: Simulator parameter settings for SCML 2021.

Setting Value Notes

Number of simulation days (S) 50 < S < 200 Based on available computational resources.
Total simulation time (in seconds) 7200 Two hours
Exogenous contracts horizon ⌈∼ U (0.1, 0.4)S⌉ Sampled uniformly, between 10% and 40%

of the number of simulation days.
Reporting period 5
Negotiation Settings
Negotiation time limit (in second) 120 Two minutes
Negotiation rounds limit 20
Negotiation quota > b× h At least the number of potential partners (b)

× the exogenous contract horizon (h).
Offer time limit (in seconds) 10
Negotiation speed multiplier 21 All negotiations end the day they begin.
Spot Market Parameters
Trading price parameters β = 0.9, Q−1(p) = 50 Equation 1
Per-agent penalty parameters λ = 0.1, α = 0.9 Equation 2
Global penalty 0.15

A.2 World Configurations

An SCML tournament comprises multiple simulations, each one characterized by a world configuration,
which in turn comprises the following:

1. A supply chain (i.e., a production graph; see Figure 1) with nodes representing products and manu-
facturing processes/production levels. Product nodes are annotated with their catalog prices.

2. Some number of factories at each level in the chain, with an assignment of agents (i.e., factory managers)
to each factory.

3. Factory profiles such that each factory is characterized by some number of lines (ν, constant across all
factories), a production cost ca, and an initial balance bl, which is constant across all factories at the
same level in the chain. Each factory executes exactly one manufacturing process at one and only one
level in the chain; at all other levels, ca is infinite.

4. Exogenous buy contract parameters for the raw material and exogenous sell contract parameters for
the final product.

16

A.2 World Configurations
Table 3: Simulator parameters for SCML world generation. We write l for manufacturing process/production
level, p for product, a for agents/factory managers, and d for days.

Setting Distribution Notes

Inventory valuation ϵ ∼ U [0, 1/2] 12 The fraction of the trading price at
which to value inventory at the end of
the game, when calculating the agents’
scores. This value is posted in the Set-
tings section of the bulletin board.

Number of processes (levels) L > 2 Number of processes/levels. The ac-
tual number will depend on the num-
ber of participants, and will vary be-
tween simulations.

Number of factories per process (level) l |A|l ≥ 2, for all l ∈
{0, . . . , L}

Number of factories that can execute
each process. The actual number will
depend on the number of participants,
and will vary between simulations.

Production cost at process (level) l cl ∼ l × U [1, 10] Production costs increase with level.
They are higher for intermediate prod-
ucts closer to the finished product, and
lower for those closer to the raw mate-
rial.

Production cost per factory a ca ∼ U [cl, 4× cl] Production costs per factory range
widely.

Profit per process (level) l πl ∼ N (U [0.1, 0.2], 0.05) The profit achievable if all factories
exchanged products at catalog prices
and produced at maximum capacity,
assuming they all incurred the average
production cost.

Productivity per process (level) l ηl(d) ∼ U [0.8, 1.0], for all
d ∈ {0, . . . , S − 1}

The fraction of production lines per
process that are assumed occupied
when generating the configuration
(sampled independently for each pro-
cess and day).

Number of lines per factory a νa = 10 Number of lines per level νl =∑|A|l
a=0 νa.

Raw material catalog price g0 = 10 Raw material catalog price, on which
all other catalog prices depend.

Cash availability ξ ∼ U [1.5, 2.5] When ξ > 1, the cash injected into
the simulator beyond a base amount,
which is what would be required for
each factory to execute its manufac-
turing process to produce an average
quantity assuming average production
costs and catalog prices.

Exogenous controllability e ∼ U [0.2, 0.8] Controls how many exogenous con-
tracts per day are received by factories
at the ends of the chain. Larger values
mean more contracts, giving the agent
more fine-tuned control over the quan-
tities it can sign for.

17

A.3 Tournament Generation
All of these aspects of a world configuration are specified by parameters that appear in Table 3, The

following is a simplified13 sketch of how these parameters are set: i.e., of the distributions from which they
are drawn: i.e., of the process used to generate an SCML2021 world configuration:

• Sample the simulator parameters listed in Table 3 from the specified distributions.14

• Generate catalog prices for each product p (produced at level l = p − 1) as the sum of the input and

production costs: for all p ∈ {1, . . . , L+ 1}, gp = (gl + µp) (1 + πl), where µp = 1
|A|l

∑|A|l
a=0 ca.

• Set the total number of active lines per process/level on all days d ∈ {0, . . . , S−1}, given the production
capability factor (productivity per process) ηl(d), to be Al(d) = ⌊νl ηl(d)⌋. Consequently, the total
production capacity for product p (produced at level l = p − 1) on day d is Qp(d) = min{Ql(d −
1), Al(d)}, for all p ∈ {1, . . . , L+ 1}, and Q0(d) = A0(d).

• Compute the endowments for the factories at level l (producing product p = l + 1) as follows: for all
l ∈ {0, . . . , L− 1},

bl = ξ

(
gl + µp

|A|l

) S−1∑
d=0

Qp(d)

This initial balance is intended to be sufficient so that each factory can cover the cost of producing
an average quantity of the product at its level for the duration of the simulation, even if it never sells
anything. More specifically, in this calculation, each factory is assumed to buy Qp(d)/|A|l inputs at
catalog prices gl, and produce that same quantity of outputs at an average cost µp, each and every
day of the simulation. For ξ > 1, this design ensures that the average factory will not go bankrupt,
although it does not guarantee the same for any particular agent.

• The total quantity of the raw material across all exogenous buy contracts with a delivery date on day
d is Q0(d), and the total quantity of the finished product across all exogenous sell contracts with a
delivery date on day d is QL(d). These totals are divided among the corresponding factories randomly,
but in such a way that the fraction of exogenous contracts assigned to one factory relative to others at
the same level remains consistent throughout a simulation.

The quantity available to a factory a on day d is further divided into a set of na contracts, whose
number increases with the exogenous contract controllability parameter (e). Each of these contracts is
revealed to the relevant agent at most exogenous-contracts-horizon days before its delivery date.

The unit price of all exogenous contracts for product p is set to the catalog price (gp).

A.3 Tournament Generation

This section describes the process of running a tournament in more detail. Note, however, that these details
are subject to change without notice.

Note: You can safely skip this section if you are not interested in these details. The main takeaway is:
when you design your agents, you should not make any assumptions about the other agents in the world.

We start by differentiating between two concepts:

Basic Configuration A world configuration up to the assignment of agents to factories.

Assigned Configuration A basic configuration with all factories assigned to agents (i.e, factory managers)—
that is, a world configuration.

13See the SCML2020World.generate() method for more details.
14U denotes the uniform distribution and N , the normal distribution.

18

REFERENCES
We assume a set of C competitors denoted by C = {0, . . . , C − 1}. In general, the number C is smaller

than the number of submitted agents, as not all submitted agents will participate in all simulations. On the
contrary, the tournament will be run in a round-robin fashion, with, for example, C = 3, so that only three
submitted agents partake in each simulation. The remaining agents, if any, will be default agents designed
by the SCML organizing committee. These default agents are designed to facilitate trade, and are included
in the round robin to create a fair competition among various combinations of submitted agents.

We denote by Ai the number of copies of competitors (i.e., agents) of type i ∈ C included in any given
simulation. Note that Ai is 1 in the standard track, but exceeds 1 in the collusion track.

A basic configuration is generated as follows:

1. Simulation parameters are set as described in Section 6.

2. If this is a standard competition, Ai is set to 1; otherwise, it is a collusion competition, and Ai ∼ U [2, 4].

3. Draw a number of levels/processes L ∼ U(2, 5).

4. For each process/production level (l), draw a number of factories/agents |A|l ∼ U(2, x), where x is
selected such that |A|lL ≥ AiC.

5. Generate the rest of a basic configuration, given L and |A|l, as per Appendix A.2.

6. Select AiC of the factories and call them the assignable factories. Partition this set into C sets of
factories, B0, . . . , BC−1, each of cardinality Ai.

Now that we have a basic configuration and a partition of the assignable factories, we generate Ai copies
of each agent type i. The factory sets in the partition are then randomly matched with the agent types:
e.g., agent type i might be assigned to factory set Bi, for all agent types i ∈ C. The result of this process is
a world configuration, which is simulated until completion K ≥ 1 times.

The assignment of agent types to factory sets is then rotated one step (i.e., factories assigned to agent
type i are assigned to agent type i+ 1 mod C), and the world is simulated again with this new assignment
another K times. This process is repeated C times ensuring that every agent type is assigned to every
factory set in the partition, and that each such assignment is simulated K times.

Let’s walk through an example to clarify this process. Assume three competing agents (i.e., agent types),
A0, A1, and A2, are participating in the collusion league, so let’s create three copies of each type. Now
assume a world of 10 factories, distributed over three levels, L0, L1, and L2, with three factories at level
0; two at level 1; and five at level 2. We partition these 10 factories into factory sets at random. For
example, B0 = {0, 3, 5}, B1 = {1, 2, 9}, and B2 = {6, 7, 8}, with one factory (4) leftover, to be assigned to
the organizing committee’s agents. Now the first set of K simulations will assign B0 to A0, B1 to A1, and
B2 to A2; the second will rotate this assignment, so that B0 is assigned to A1, B1 to A2, and B2 to A0; and
the third will rotate this assignment again, so that B0 is assigned to A2, B1 to A0, and B2 to A1.

The number of basic configurations and the number of simulations of each assigned configuration will
be determined based on available computational resources. However, as per the aforementioned process,
the number of assigned configurations for each basic configuration will always be equal to the number of
competitors, C. If the number of submitted agents is actually C, not 3, and the competition is run with M
agent types present in each simulation, not 3, then this process will be repeated

(
C
M

)
times, for each possible

choice of M agents among C competitors, leading to KM
(
C
M

)
= C!K

(M−1)!(C−M)! simulations for each basic

configuration. 15

References

[1] T. Baarslag, K. Hindriks, C. Jonker, S. Kraus, and R. Lin, “The first automated negotiating agents
competition (ANAC 2010),” in New Trends in agent-based complex automated negotiations, pp. 113–135,
2012.

15The number of agent types per simulation (M) can range between 2 and C.

19

REFERENCES
[2] Y. Mohammad, E. A. Viqueira, N. A. Ayerza, A. Greenwald, S. Nakadai, and S. Morinaga, “Supply chain

management world,” in International Conference on Principles and Practice of Multi-Agent Systems,
pp. 153–169, Springer, 2019.

[3] C. R. Williams, V. Robu, E. H. Gerding, and N. R. Jennings, “Negotiating concurrently with unknown
opponents in complex, real-time domains,” in Proc. of the Twentieth European Conference on Artificial
Intelligence, pp. 834—-839, 2012.

[4] R. Aydoğan, D. Festen, K. V. Hindriks, and C. M. Jonker, Alternating Offers Protocols for Multilateral
Negotiation, pp. 153–167. Springer International Publishing, 2017.

[5] A. Rubinstein, “Perfect equilibrium in a bargaining model,” Econometrica, vol. 50, no. 1, pp. 97–109,
1982.

[6] W. Guth, R. Schmittberger, and B. Schwarze, “An experimental analysis of ultimatum bargaining,”
Journal of Economic Behavior & Organization, vol. 3, no. 4, pp. 367–388, 1982.

[7] Y. Mohammad, S. Nakadai, and A. Greenwald, “NegMAS: A platform for situated negotiations,” in
Twelfth International Workshop on Agent-based Complex Automated Negotiations (ACAN2019) in con-
junction with IJCAI 2019, August 2019.

20

	Overview
	Game Entities
	The Environment
	Agents: The Decision-Makers

	Negotiation
	Mechanism
	Data Structures

	Contract Execution
	Breach Processing
	Bankruptcy
	Spot Market Prices
	Examples

	Information
	Private Information
	Public Information

	Simulation Steps
	The SCML Platform
	Negotiators
	Agents (Factory Managers)
	Callbacks
	Actions

	Tournament Mechanics
	Appendix
	Simulation Parameters
	World Configurations
	Tournament Generation

